Pollution, biological invasions and climate change pose the greatest threats to biodiversity worldwide. Few studies explore the interlink between invasive species and local pollution sites. This study describes the type and cytochemical properties of haemocytes from invasive Carcinus maenas on the southwestern Atlantic coast (Argentina). Moreover, the morphology of haemocytes and the total haemocyte count (THC) as well as the differential haemocyte count (DHC) of crabs sampled at clean or unpolluted and polluted sites were compared, to determine whether environmental stresses were evident in their haemocytes. Our results revealed two groups or subpopulations of haemocytes: hyalinocytes, as well as granulocytes and semi-granulocytes. The type of haemocyte from crabs from both sites showed no differences in their morphology. For cytochemical assays, only neutral red dye showed a more intense staining of crab haemocytes at the polluted site. All haemocytes were positive to Periodic Acid-Schiff and Sudan Black. THC of crabs from the clean site were significantly higher, as well as having a significantly higher proportion of hyalinocytes and a lower proportion of granular cells. This study provides a baseline immunological assessment for C. maenas haemocytes, suggesting a differential haemocytic response to environmental stress.
La contaminación, las invasiones biológicas y el cambio climático representan las mayores amenazas para la biodiversidad en todo el mundo. Pocos estudios exploran la interrelación entre las especies invasoras y los sitios de contaminación local. Este estudio describe el tipo y las propiedades citoquímicas de los hemocitos del invasor Carcinus maenas en la costa suroeste del Atlántico (Argentina). Además, se comparó la morfología de los hemocitos y el recuento total de hemocitos (THC) y el recuento diferencial de hemocitos (DHC) de cangrejos muestreados en sitios limpios o no contaminados y contaminados, para determinar si el estrés ambiental era evidente en sus hemocitos. Nuestros resultados revelaron dos grupos o subpoblaciones de hemocitos: hialinocitos y granulocitos y semigranulocitos. El tipo de hemocito de los cangrejos de ambos sitios no mostró diferencias en su morfología. Para los ensayos citoquímicos, solo el tinte rojo neutro mostró una tinción más intensa de los hemocitos de cangrejo en el sitio contaminado. Todos los hemocitos fueron positivos a PeriodicAcid-Schiff y Sudan Black. El THC de los cangrejos del sitio limpio fue significativamente mayor, además de tener una proporción significativamente mayor de hialinocitos y una menor proporción de células granulares. Este estudio proporciontabña una evaluación inmunológica de referencia para los hemocitos de C. maenas, lo que sugiere una respuesta hemocítica diferencial al estrés ambiental.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Babich, H. & E. Borenfreund, 1991. Cytotoxicity of T-2 toxin and its metabolites determined with the neutral red cell viability assay. Appl. Environ. Microbiol., 57: 2101-2103.
Bancroft, J. D. & H. C. Cook, 1994. Manual of histological techniques and their diagnostic application: 1-457. (Churchill Livingstone, New York, NY).
Barth, T., N. Moraes & A. M. Barracco, 2005. Evaluation of some hematoimmunological parameters in the mangrove oyster Crassostrea rhizophorae of different habitats of Santa Catarina Island, Brazil. Aquat. Living Resour., 18: 179-186.
Battison, A., R. Cawthorn & B. Horney, 2003. Classification of Homarus americanus hemocytes and the use of differential hemocyte counts in lobsters infected with Aerococcus viridans var. homari (Gaffkemia). J. Invertebr. Pathol., 84: 177-197.
Bauchau, A., 1980. Crustaceans. In: N. Ratcliff & A. Rowley (eds.), Invertebrate blood cells: 385-420. (Academic Press, New York, NY).
Bigatti, G., M. A. Primost, M. Cledón, A. Averbuj, N. Theobald, W. Gerwinski, W. Arntz, E. Morriconi & P. E. Penchaszadeh, 2009. Biomonitoring of TBT contamination and imposex incidence along 4700 km of Argentinean shoreline (SW Atlantic: from 38°S to 54°S). Mar. Pollut. Bull., 58: 695-701.
Bogdan, C., M. Röllinghoff & A. Diefenbach, 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol., 12: 64-76.
Bojko, J., A. L. Burgess, A. G. Baker & C. H. Orr, 2021. Invasive non-native crustacean symbionts: diversity and impact. J. Invertebr. Pathol., 186: 107482.
Bojko, J., E. Lipp, A. T. Ford, D. C. Behringer, B. R. Silliman & K. D. Lafferty, 2020. Pollution can drive marine diseases. In: D. C. Behringer, B. R. Silliman & K. D. Lafferty (eds.), Marine disease ecology (1st ed.): 95-113. (Oxford University Press, Oxford).
Correia, A., 2008. Histofisiologia do canal alimentar e hemócitos de Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) tratadas com nim (Azadirachta indica A. Juss). (Dissertation, Universidade Federal Rural de Pernambuco).
Crawley, M. J., 2007. The R book. (Wiley, Chichester).
Eddy, F., A. Powell, S. Gregory, L. M. Nunan, D. V. Lightner, P. J. Dyson, A. F. Rowley & R. J. Shields, 2007. A novel bacterial disease of the European shore crab, Carcinus maenas molecular pathology and epidemiology. Microbiology, 153: 2839-2849.
Frizzera, A., J. Bojko, F. Cremonte & N. Vázquez, 2021. Symbionts of invasive and native crabs, in Argentina: the most recently invaded area on the southwestern Atlantic coastline. J. Invertebr. Pathol., 184: 107650.
Giamberini, L. & J. C. Pihan, 1997. Lysosomal changes in the hemocytes of the freshwater mussel Dreissena polymorpha experimentally exposed to lead and zinc. Dis. Aquat. Organ., 28: 221-227.
Grosholz, E. D. & G. M. Ruiz, 2002. Management plan for the European green crab. Aquatic Nuisance Species Task Force. Available online at http://www.anstaskforce.gov/GreenCrabManagementPlan.pdf.
Hidalgo, F. J., P. J. Baron & J. Orensanz, 2005. A prediction come true: the green crab invades the Patagonian coast. Biol. Invasions, 7: 547-552.
Hong, H., L. Donaghy, C. Kang, H. Kang, H. Lee, H. Park & K. Choi, 2016. Substantial changes in hemocyte parameters of Manila clam Ruditapes philippinarum two years after the Hebei Spirit oil spill off the west coast of Korea. Mar. Pollut. Bull., 108: 171-179.
ICES, 2004. Report of the working group on biological effects of contaminants: 1-86. (ICES, Ostend).
Jiravanichpaisal, P., B. L. Lee & K. Söderhäll, 2006. Cell-mediated immunity en arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology, 211: 213-236.
Johnston, M., H. Elder & P. Davies, 1973. Cytology of Carcinus haemocytes and their function in carbohydrate metabolism. Comp. Biochem. Physiol. (Part A, Physiology), 46: 569-574.
Jussila, J., J. Jago, E. Tsvetnenko, B. Dunstan & L. Evans, 1997. Total and differential haemocyte count in western rock lobsters (Panulirus cygnus George) under postharvest stress. Mar. Freshw. Res., 48: 863-868.
Klassen, G. & A. Locke, 2007. A biological synopsis of the European green crab, Carcinus maenas: 1-75. (Fisheries and Oceans Canada, Moncton, NB).
Kondo, M., 2003. Experiments of body defence mechanisms in crustacean. NFU, National Fisheries University, Shimonoseki, 1: 13.
Lorenzon, S., M. Francese, V. Smith & E. Ferrero, 2001. Heavy metals affect the circulating haemocyte number in the shrimp Palaemon elegans. Fish Shellfish Immunol., 11: 459-472.
Lowenberger, C., 2001. Innate immune response of Aedes aegypti. Insect Biochem. Mol. Biol., 31: 219-229.
Massara Paletto, V., M. G. Commendatore & J. L. Esteves, 2008. Hydrocarbon levels in sediments and bivalve mollusks from Bahía Nueva (Patagonia, Argentina): an assessment of probable origin and bioaccumulation factors. Mar. Pollut. Bull., 56: 2082-2105.
Matozzo, V. & M. G. Marin, 2010. The role of haemocytes from the crab Carcinus aestuarii (Crustacea, Decapoda) in immune responses: a first survey. Fish Shellfish Immunol., 28: 534-541.
McCullagh, P., 2007. Regression models for ordinal data. J. R. Stat. Soc., (Series B, Methodology), 42: 109-127.
Mix, M. C. & A. K. Sparks, 1980. Hemocyte classification and differential counts in the Dungeness crab, Cancer magister. J. Invertebr. Pathol., 35: 134-143.
Pipe, R. & J. Coles, 1995. Environmental contaminants influencing immune function in marine bivalve molluscs. Fish Shellfish Immunol., 5: 581-598.
Primost, M. A., G. Bigatti & F. Márquez, 2015. Shell shape as indicator of pollution in marine gastropods affected by imposex. Mar. Freshw. Res., 67: 1948-1954.
R Development Core Team, 2011. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna). Available online at http://www.R-project.org.
Russo, J., M. Brehélin & Y. Carton, 2001. Haemocyte changes in resistant and susceptible strains of D. melanogaster caused by virulent and avirulent strains of the parasitic wasp Leptopilina boulardi. J. Insect Physiol., 47: 167-172.
Smith, V., R. Swindlehurst, P. Johnston & A. Vethaak, 1995. Disturbance of host defence capability in the common shrimp, Crangon crangon by exposure to harbour dredge spoils. Aquat. Toxicol., 32: 43-58.
Sokal, R. R. & F. J. Rohlf, 1981. Taxonomic congruence in the Leptopodomorpha re-examined. Syst. Zool., 30: 309-325.
Taylor, S., M. Landman & N. Ling, 2009. Flow cytometric characterization of freshwater crayfish hemocytes for the examination of physiological status in wild and captive animals. J. Aquat. Anim. Health, 21: 195-203.
Torres, P. J. & X. González-Pisani, 2016. First record of green crabs, Carcinus maenas (Linnaeus, 1758) in Golfo Nuevo, Chubut Argentina: a new northern limit of distribution in the Patagonian coast. Ecol. Austral., 26: 134-137.
Travers, M., P. Da Silva, N. Le Goïc, D. Marie, A. Donval, S. Huchette, M. Koken & C. Paillard, 2008. Morphologic, cytometric and functional characterisation of abalone (Haliotis tuberculata) haemocytes. Fish Shellfish Immunol., 24: 400-411.
Victor, B., 1993. Responses of hemocytes and gill tissues to sublethal cadmium chloride poisoning in the crab Paratelphusa hydrodromous (Herbst). Arch. Environ. Contam. Toxicol., 24: 432-439.
Williams, A. & P. Lutz, 1975. Blood cell types in Carcinus maenas and their physiological role. J. Mar. Biol. Assoc. United Kingdom, 55: 671-674.
Young, A. & J. O. Elliott, 2020. Life history and population dynamics of green crabs (Carcinus maenas). Fishes, 5: 4.
| All Time | Past Year | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 216 | 87 | 3 |
| Full Text Views | 11 | 6 | 0 |
| PDF Views & Downloads | 21 | 9 | 1 |
Pollution, biological invasions and climate change pose the greatest threats to biodiversity worldwide. Few studies explore the interlink between invasive species and local pollution sites. This study describes the type and cytochemical properties of haemocytes from invasive Carcinus maenas on the southwestern Atlantic coast (Argentina). Moreover, the morphology of haemocytes and the total haemocyte count (THC) as well as the differential haemocyte count (DHC) of crabs sampled at clean or unpolluted and polluted sites were compared, to determine whether environmental stresses were evident in their haemocytes. Our results revealed two groups or subpopulations of haemocytes: hyalinocytes, as well as granulocytes and semi-granulocytes. The type of haemocyte from crabs from both sites showed no differences in their morphology. For cytochemical assays, only neutral red dye showed a more intense staining of crab haemocytes at the polluted site. All haemocytes were positive to Periodic Acid-Schiff and Sudan Black. THC of crabs from the clean site were significantly higher, as well as having a significantly higher proportion of hyalinocytes and a lower proportion of granular cells. This study provides a baseline immunological assessment for C. maenas haemocytes, suggesting a differential haemocytic response to environmental stress.
La contaminación, las invasiones biológicas y el cambio climático representan las mayores amenazas para la biodiversidad en todo el mundo. Pocos estudios exploran la interrelación entre las especies invasoras y los sitios de contaminación local. Este estudio describe el tipo y las propiedades citoquímicas de los hemocitos del invasor Carcinus maenas en la costa suroeste del Atlántico (Argentina). Además, se comparó la morfología de los hemocitos y el recuento total de hemocitos (THC) y el recuento diferencial de hemocitos (DHC) de cangrejos muestreados en sitios limpios o no contaminados y contaminados, para determinar si el estrés ambiental era evidente en sus hemocitos. Nuestros resultados revelaron dos grupos o subpoblaciones de hemocitos: hialinocitos y granulocitos y semigranulocitos. El tipo de hemocito de los cangrejos de ambos sitios no mostró diferencias en su morfología. Para los ensayos citoquímicos, solo el tinte rojo neutro mostró una tinción más intensa de los hemocitos de cangrejo en el sitio contaminado. Todos los hemocitos fueron positivos a PeriodicAcid-Schiff y Sudan Black. El THC de los cangrejos del sitio limpio fue significativamente mayor, además de tener una proporción significativamente mayor de hialinocitos y una menor proporción de células granulares. Este estudio proporciontabña una evaluación inmunológica de referencia para los hemocitos de C. maenas, lo que sugiere una respuesta hemocítica diferencial al estrés ambiental.
| All Time | Past Year | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 216 | 87 | 3 |
| Full Text Views | 11 | 6 | 0 |
| PDF Views & Downloads | 21 | 9 | 1 |