This study aims to elucidate the physical evidence of the moulting stages and the characteristics of ecdysteroid levels in the moulting cycle of Neocaridina denticulata sinensis. From hatching to the first complete pleopod development, N. denticulata sinensis moults 14 times at 25°C in the laboratory. The whole process was divided into four stages based on the moulting characteristics during the various intervals. Using the structural changes of the telson and Drach’s classification system, four moulting periods (postmoult, intermoult, premoult, and ecdysis) were recognized. In addition, based on the changes of the setal lumen, internal cone, and the epidermis, the premoult period was further divided into five substages (D0, D1, D2, D3, and D4). Despite similar fluctuation patterns in mature males and females, significant differences of haemolymph ecdysteroid titers were revealed in postmoult, intermoult, and premoult. These works will provide an important additional reference for the exploration of the moulting mechanism in crustaceans.
Cette étude vise à élucider la caractéristique physique des stades de mue et les valeurs d’ecdystéroïdes au cours du cycle de mue de Neocaridina denticulata sinensis. De l’éclosion au développement complet du premier pléopode, N. denticulata sinensis mue 14 fois à 25°C au laboratoire. Le processus a été divisé en quatre stades basés sur les caractéristiques de la mue au cours des divers intervalles. A partir des modifications du telson et du système de classification de Drach, quatre périodes ont été reconnues (postmue, intermue, prémue et ecdysis). De plus, sur la base des changements de la lumière de la soie, du cône interne et de l’épiderme, la prémue a été encore divisée en cinq sous-stages (D0, D1, D2, D3, et D4). Malgré des fluctuations similaires entre mâles et femelles, des variations significatives des ecdystéroïdes de l’hémolymphe sont présentes en postmue, intermue et prémue. Ce travail fournira une référence supplémentaire pour l’exploration du mécanisme de la mue chez les Crustacés.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ables, E. T. & D. Drummond-Barbosa, 2010. The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell, 7: 581-592. DOI:10.1016/j.stem.2010.10.001.
Adhitama, N., Y. Kato, T. Matsuura & H. Watanabe, 2020. Roles of and cross-talk between ecdysteroid and sesquiterpenoid pathways in embryogenesis of branchiopod crustacean Daphnia magna. PLoS ONE, 15: e0239893. DOI:10.1371/journal.pone.0239893.
Anderson, S. L., W. H. Clark & E. S. Chang, 1985. Multiple spawning and molt synchrony in a free spawning shrimp (Sicyonia ingentis: Penaeoidea). Biological Bulletin, 168: 377-394. DOI:10.2307/1541519.
Anger, K., 1983. Moult cycle and morphogenesis in Hyas araneus larvae (Decapoda, Majidae), reared in the laboratory. Helgoländer Meeresuntersuchungen, 36: 285-302.
Baldaia, L., P. Porcheron, J. Coimbra & P. Cassier, 1984. Ecdysteroids in the shrimp Palaemon serratus: relations with molt cycle. General and Comparative Endocrinology, 55: 437-443.
Belles, X. & M. D. Piulachs, 2015. Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation. Biochimica et Biophysica Acta, 1849: 181-186. DOI:10.1016/j.bbagrm.2014.05.025.
Bownes, M., A. Shirras, M. Blair, J. Collins & A. Coulson, 1988. Evidence that insect embryogenesis is regulated by ecdysteroids released from yolk proteins. Proceedings of the National Academy of Sciences, 85: 1554-1557. DOI:10.1073/pnas.85.5.1554.
Brown, M. R., D. H. Sieglaff & H. H. Rees, 2009. Gonadal ecdysteroidogenesis in Arthropoda: occurrence and regulation. Annual Review of Entomology, 54: 105-125. DOI:10.1146/annurev.ento.53.103106.093334.
Bursey, C. R. & C. E. Lane, 1971. Ionic and protein concentration changes during the molt cycle of Penaeus duorarum. Comparative Biochemistry and Physiology, (Part A, Physiology) 40(1): 155-162. DOI:10.1016/0300-9629(71)90158-7.
Cai, S., 1998. A review of crustacean endocrinology. Journal of Fisheries of China, 22: 154-161.
Chaix, J. C. & M. De Reggi, 1982. Ecdysteroid levels during ovarian development and embryogenesis in the spider crab Acanthonyx lunulatus. General and Comparative Endocrinology, 47: 7-14. DOI:10.1016/0016-6480(82)90076-4.
Chan, S. M., S. M. Rankin & L. L. Keeley, 1988. Characterization of the molt stages in Penaeus vannamei: setogenesis and hemolymph levels of total protein, ecdysteroids, and glucose. Biological Bulletin, 175: 185-192. DOI:10.2307/1541558.
Chang, E. S., M. J. Bruce & S. L. Tamone, 1993. Regulation of crustacean molting: a multi-hormonal system. American Zoologist, 33: 324-329. DOI:10.1093/icb/33.3.324.
Chang, E. S., B. A. Sage & J. D. O’Connor, 1976. The qualitative and quantitative determinations of ecdysones in tissues of the crab, Pachygrapsus crassipes, following molt induction. General and Comparative Endocrinology, 30: 21-33. DOI:10.1016/0016-6480(76)90062-9.
Cuzin-Roudy, J., C. Strambi, A. Strambi & J. P. Delbecque, 1989. Hemolymph ecdysteroids and molt cycle in males and females of Siriella armata M.-Edw. (Crustacea: Mysidacea): possible control by the MI-ME X-organ of the eyestalk. General and Comparative Endocrinology, 74: 96-109. DOI:10.1016/0016-6480(89)90118-4.
Dall, W., 1974. Indices of nutritional state in the western lobster, Panulirus longipes (Milne Edwards). I. Blood and tissue constituents and water content. Journal of Experimental Marine Biology and Ecology, 16: 167-180. DOI:10.1016/0022-0981(74)90018-5.
Dinan, L., 2003. Ecdysteroid structure-activity relationships. Studies in Natural Products Chemistry, 29: 3-71. DOI:10.1016/S1572-5995(03)80004-2.
Djangmah, J. S., 1970. The effects of feeding and starvation on copper in the blood and hepatopancreas, and on blood proteins of Crangon vulgaris (Fabricius). Comparative Biochemistry and Physiology, 32: 709-731. DOI:10.1016/0010-406X(70)90823-6.
Drach, P., 1939. Mue et cycle d’intermue chez les Crustacés Décapodes. Ann. Inst. Océanogr, Paris, (N. S.), 19: 103-391.
Drach, P. & C. Tchernigovtzeff, 1967. Sur la méthode de détermination des stades d’intermue et son application générale aux Crustacés. Vie Milieu, (A, Biol. Mar.), 18: 595-610.
Gancz, D., T. Lengil & L. Gilboa, 2011. Coordinated regulation of niche and stem cell precursors by hormonal signaling. PLoS Biology, 9: e1001202. DOI:10.1371/journal.pbio.1001202.
Gao, Y., X. J. Zhang, J. K. Wei, X. Q. Sun, J. B. Yuan, F. H. Li & J. H. Xiang, 2015. Whole transcriptome analysis provides insights into molecular mechanisms for molting in Litopenaeus vannamei. PLoS ONE, 10: e0144350. DOI:10.1371/journal.pone.0144350.
Guerao, G., G. Rotllant & K. Anger, 2010. Characterization of larval moulting cycles in Maja brachydactyla (Brachyura, Majidae) reared in the laboratory. Aquaculture, 302: 106-111. DOI:10.1016/j.aquaculture.2010.02.010.
Gunamalai, V., R. Kirubagaran & T. Subramoniam, 2004. Hormonal coordination of molting and female reproduction by ecdysteroids in the mole crab Emerita asiatica (Milne Edwards). General and Comparative Endocrinology, 138: 128-138. DOI:10.1016/j.ygcen.2004.06.002.
Harpaz, S., D. Kahan, M. Moriniere & P. Porcheron, 1987. Level of ecdysteroids in the hemolymph of the freshwater prawn, Macrobrachium rosenbergii (Crustacea: Decapoda) in relation to the phenomenon of cheliped autotomy in males. Experientia, 43: 901-902.
Hayd, L. A., K. Anger & W. C. Valenti, 2008. The moulting cycle of larval Amazon River prawn Macrobrachium amazonicum reared in the laboratory. Nauplius, 16: 55-63.
Huang, H. Y., C. R. Fu, X. L. Chen, J. Gong, X. S. Huang & H. H. Ye, 2015. Molt-inhibiting hormone (MIH) gene from the green mud crab Scylla paramamosain and its expression during the molting and ovarian cycle. Aquaculture Research, 46: 2665-2675. DOI:10.1111/are.12421.
Kappalli, S., N. T. Supriva, V. Krishnakumar, A. Gopinathan & E. S. Chang, 2012. Hemolymph ecdysteroid titers in a brachyuran crab Uca triangularis that concomitantly undergoes molting and reproduction. Zoological Studies, 51: 966-976.
Kumar, V., A. K. Sinha, N. Romano, K. M. Allen, B. A. Bowman, K. R. Thompson & J. H. Tidwell, 2018. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Reviews in Fisheries Science and Aquaculture, 26: 254-273. DOI:10.1080/23308249.2018.1429384.
Miller, T. W. & D. G. Hankin, 2004. Descriptions and durations of premolt setal stages in female Dungeness crabs, Cancer magister. Marine Biology, 144: 101-110.
Moriyasu, M. & P. Mallet, 1986. Molt stages of the snow crab Chionoecetes opilio by observation of morphogenesis of setae on the maxilla. Journal of Crustacean Biology, 6: 709-718. DOI:10.1163/193724086X00514.
Mykles, D. L., 2011. Ecdysteroid metabolism in crustaceans. The Journal of Steroid Biochemistry and Molecular Biology, 127: 196-203. DOI:10.1016/j.jsbmb.2010.09.001.
Nakatsuji, T., C. Y. Lee & R. D. Watson, 2009. Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action. Comparative Biochemistry and Physiology, (Part A, Molecular and Integrative Physiology) 152: 139-148. DOI:10.1016/j.cbpa.2008.10.012.
Okumura, T. & K. Aida, 2000. Fluctuations in hemolymph ecdysteroid levels during the reproductive and non-reproductive molt cycles in the giant freshwater prawn Macrobrachium rosenbergii. Fisheries Science, 66: 876-883. DOI:10.1046/j.1444-2906.2000.00142.x.
Passano, L. M., 1960. Molting and its control. In: T. H. Waterman (ed.), The physiology of Crustacea, 1: 473-536. (Academic Press, New York, NY).
Qiao, H., F. W. Jiang, Y. W. Xiong, S. F. Jiang, H. T. Fu, F. Li, W. Y. Zhang, S. M. Sun, S. B. Jin, Y. S. Gong & Y. Wu, 2018. Characterization, expression patterns of molt-inhibiting hormone gene of Macrobrachium nipponense and its roles in molting and growth. PLoS ONE, 13: e0198861. DOI:10.1371/journal.pone.0198861.
Raghavan, S. D. A. & A. Ayanath, 2019. Effect of ecdysteroids on oogenesis in the freshwater crab Travancoriana schirnerae Bott, 1969 (Crustacea: Gecarcinucidae). Brazilian Journal of Biological Sciences, 6: 87-101. DOI:10.21472/bjbs.061208.
Scheer, B., 1960. Aspects of the intermoult cycle in natantians. Comparative Biochemistry and Physiology, 1: 3-18. DOI:10.1016/0010-406X(60)90003-7.
Shen, J., D. F. Zhu, Z. H. Hu, Y. Z. Qi & C. J. Wang, 2011. Molt staging in the swimming crab Portunus trituberculatus. Journal of Fisheries of China, 35: 1481-1487.
Shyamal, S., G. Anilkumar, R. Bhaskaran, G. P. Doss & D. S. Durica, 2015. Significant fluctuations in ecdysteroid receptor gene (EcR) expression in relation to seasons of molt and reproduction in the grapsid crab, Metopograpsus messor (Brachyura: Decapoda). General and Comparative Endocrinology, 211: 39-51. DOI:10.1016/j.ygcen.2014.11.006.
Shyamal, S., K. Sudha, N. Gayathri & G. Anilkumar, 2014. The Y-organ secretory activity fluctuates in relation to seasons of molt and reproduction in the brachyuran crab, Metopograpsus messor (Grapsidae): ultrastructural and immunohistochemical study. General and Comparative Endocrinology, 196: 81-90. DOI:10.1016/j.ygcen.2013.11.016.
Snyder, M. J. & E. S. Chang, 1991. Ecdysteroids in relation to the molt cycle of the American lobster, Homarus americanus: I. Hemolymph titers and metabolites. General and Comparative Endocrinology, 81: 133-145. DOI:10.1016/0016-6480(91)90133-Q.
Snyder, M. J. & E. S. Chang, 1992. Role of the mid-gut gland in metabolism and excretion of ecdysteroids by lobsters, Homarus americanus. General and Comparative Endocrinology, 85: 286-296. DOI:10.1016/0016-6480(92)90013-a.
Sonobe, H. & R. Yamada, 2004. Ecdysteroids during early embryonic development in silkworm Bombyx mori: metabolism and functions. Zoological Science, 21: 503-516. DOI:10.2108/zsj.21.503.
Soumoff, C. & D. M. Skinner, 1983. Ecdysteroid titers during the molt cycle of the blue crab resemble those of other Crustacea. Biological Bulletin, 165: 321-329. DOI:10.2307/1541372.
Spazinai, E., 1990. Morphology, histology, and ultrastructure of the ecdysial gland (Y-organ) in Crustacea. In: A. P. Gupta (ed.), Morphogenetic hormones of arthropods: 233-267. (Rutgers University Press, New Brunswick, NJ).
Stevenson, J. R., 1972. Changing activities of the crustacean epidermis during the molting cycle. American Zoologist, 12: 373-380. DOI:10.1093/icb/12.2.373.
Stevenson, J. R., P. W. Amstrong, E. S. Chang & J. D. O’Connor, 1979. Ecdysone titers during the molt cycle of the crayfish Orconectes sanborni. General and Comparative Endocrinology, 39: 20-25. DOI:10.1016/0016-6480(79)90188-6.
Styrishave, B., T. Lund & O. Andersen, 2008. Ecdysteroids in female shore crabs Carcinus maenas during the moulting cycle and oocyte development. Journal of the Marine Biological Association of the UK, 88: 575-581.
Subramoniam, T., 2000. Crustacean ecdysteriods in reproduction and embryogenesis. Comparative Biochemistry and Physiology, (Part C, Pharmacology, Toxicology and Endocrinology) 125: 135-156. DOI:10.1016/S0742-8413(99)00098-5.
Sun, S. J., C. G. Fan, F. C. Li, S. M. Mu, H. Q. Tang, H. Zhang & X. J. Kang, 2007. Preliminary study on the conformation development of Neocaridina denticulata sinensis. Hebei Fisheries, 12: 22-25.
Suzuki, S., K. Yamasaki, T. Fujita, Y. Mamiya & H. Sonobe, 1996. Ovarian and hemolymph ecdysteroids in the terrestrial isopod Armadillidium vulgare (malacostracan Crustacea). General and Comparative Endocrinology, 104: 129-138. DOI:10.1006/gcen.1996.0155.
Suzuki, S., K. Yamasaki & Y. Katakura, 1990. Vitellogenin synthesis in andrectomized males of the terrestrial isopod, Armadillidium vulgare (malacostracan Crustacea). General and Comparative Endocrinology, 77: 283-291. DOI:10.1016/0016-6480(90)90312-a.
Techa, S., J. V. Alvarez & J. S. Chung, 2015. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus. General and Comparative Endocrinology, 214: 157-166. DOI:10.1016/j.ygcen.2014.07.017.
Techa, S. & J. S. Chung, 2015. Ecdysteroids regulate the levels of molt-inhibiting hormone (MIH) expression in the blue crab, Callinectes sapidus. PLoS ONE, 10: e0117278. DOI:10.1371/journal.pone.0117278.
Telford, M., 1968. The identification of sugars in the blood of three species of Atlantic crabs. Biological Bulletin, 135: 574-584.
Telford, M., 1974. Blood glucose in crayfish II. Variations induced by artificial stress. Comparative Biochemistry and Physiology, 48: 555-560. DOI:10.1016/0300-9629(74)90738-5.
Tian, Z. Y., X. J. Kang & S. M. Mu, 2012. The molt stages and the hepatopancreas contents of lipids, glycogen and selected inorganic elements during the molt cycle of the Chinese mitten crab Eriocheir sinensis. Fisheries Science, 78: 67-74. DOI:10.1007/s12562-011-0426-8.
Tiu, S. H., S. M. Chan & S. S. Tobe, 2010. The effects of farnesoic acid and 20-hydroxyecdysone on vitellogenin gene expression in the lobster, Homarus americanus, and possible roles in the reproductive process. General and Comparative Endocrinology, 166: 337-345. DOI:10.1016/j.ygcen.2009.11.005.
Travis, D. F., 1954. The molting cycle of the spiny lobster, Panulirus argus Latreille. I. molting and growth in laboratory-maintained lndividuals. Biological Bulletin, 107: 433-450. DOI:10.2307/1538591.
Turnbull, C. T., 1989. Pleopod cuticular morphology as an index of moult stage in the ornate rock lobster, Panulirus ornatus (Fabricius, 1789). Marine and Freshwater Research, 40: 285-293. DOI:10.1071/MF9890285.
Webster, S. G., 2015. Endocrinology of molting. In: E. S. Chang & M. Thiel (eds.), The natural history of Crustacea: physiology: 1-35. (Oxford University Press, Oxford, U.K.).
Yang, Y., X. J. Kang, S. M. Mu, M. S. Guo & H. Zhang, 2010. Histological study on the early gonadal differentiation in Neocaridina denticulata sinensis. Freshwater Fisheries, 40: 11-15.
Zhang, X. J., J. B. Yuan, Y. M. Sun, S. C. Li, Y. Gao, Y. Yu, C. Z. Liu, Q. C. Wang, X. J. Lv, X. X. Zhang, K. Y. Ma, X. B. Wang, W. C. Lin, L. Wang, X. L. Zhu, C. S. Zhang, J. Q. Zhang, S. J. Jin, K. J. Yu, J. Kong, P. Xu, J. Chen, H. B. Zhang, P. Sorgeloos, A. Sagi, A. Alcivar-Warren, Z. J. Liu, L. Wang, J. Ruan, K. H. Chu, B. Liu, F. H. Li & J. H. Xiang, 2019. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nature Communications, 10: 356. DOI:10.1038/s41467-018-08197-4.
Zhao, M. R., X. J. Kang, S. M. Mu, M. S. Guo & S. Q. Ge, 2009b. Ultrastructure of the vitellogenesis in the oocytes of Neocaridina denticulata sinensis. Journal of Hebei University, (Natural Science Edition) 29: 318-323, 328.
Zhao, M. R., S. M. Mu, M. S. Guo & X. J. Kang, 2009a. Structural study on follicular cells during oogenesis in the Neocaridina denticulata sinensis. Hebei Fisheries, 5: 8-11.
Zhen, S. T., S. M. Mu, T. Liu, M. S. Guo & X. J. Kang, 2012. The time and characteristics of internal and external sexual differentiation in the shrimp Neocaridina denticulata sinensis. Freshwater Fisheries, 42: 72-75.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 521 | 180 | 24 |
Full Text Views | 51 | 23 | 1 |
PDF Views & Downloads | 58 | 29 | 3 |
This study aims to elucidate the physical evidence of the moulting stages and the characteristics of ecdysteroid levels in the moulting cycle of Neocaridina denticulata sinensis. From hatching to the first complete pleopod development, N. denticulata sinensis moults 14 times at 25°C in the laboratory. The whole process was divided into four stages based on the moulting characteristics during the various intervals. Using the structural changes of the telson and Drach’s classification system, four moulting periods (postmoult, intermoult, premoult, and ecdysis) were recognized. In addition, based on the changes of the setal lumen, internal cone, and the epidermis, the premoult period was further divided into five substages (D0, D1, D2, D3, and D4). Despite similar fluctuation patterns in mature males and females, significant differences of haemolymph ecdysteroid titers were revealed in postmoult, intermoult, and premoult. These works will provide an important additional reference for the exploration of the moulting mechanism in crustaceans.
Cette étude vise à élucider la caractéristique physique des stades de mue et les valeurs d’ecdystéroïdes au cours du cycle de mue de Neocaridina denticulata sinensis. De l’éclosion au développement complet du premier pléopode, N. denticulata sinensis mue 14 fois à 25°C au laboratoire. Le processus a été divisé en quatre stades basés sur les caractéristiques de la mue au cours des divers intervalles. A partir des modifications du telson et du système de classification de Drach, quatre périodes ont été reconnues (postmue, intermue, prémue et ecdysis). De plus, sur la base des changements de la lumière de la soie, du cône interne et de l’épiderme, la prémue a été encore divisée en cinq sous-stages (D0, D1, D2, D3, et D4). Malgré des fluctuations similaires entre mâles et femelles, des variations significatives des ecdystéroïdes de l’hémolymphe sont présentes en postmue, intermue et prémue. Ce travail fournira une référence supplémentaire pour l’exploration du mécanisme de la mue chez les Crustacés.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 521 | 180 | 24 |
Full Text Views | 51 | 23 | 1 |
PDF Views & Downloads | 58 | 29 | 3 |