In this study, the complete mitochondrial genomes of three parthenogenetic Artemia populations were sequenced and analysed. The results indicate that these three genomes are similar in length (15 633-15 639 bp). Furthermore, the organization and order of all three genomes are identical, including 13 protein-coding genes (PCGs), 22 tRNA genes and 2 rRNA genes, as well as a major non-coding region (CR), with high AT bias. Furthermore, both the genetic distance and the phylogenetic analysis showed that the genus Artemia constitutes a monophyletic group, and the parthenogenetic Artemia populations here studied show the closest relationship with Artemia urmiana. This study provides baseline information on Artemia mitogenomes for further research on the taxonomy and evolutionary genetics of the genus, and thereby contributes to the conservation of Artemia germplasm resources.
Dans cette étude, les génomes mitochondriaux complets de trois populations parthénogénétiques d’ Artemia ont été séquencés et analysés. Les résultats indiquent que ces trois génomes sont similaires en longueur (15 633 bp-15 639 bp). Par ailleurs, l’organisation et l’ordre de ces trois génomes sont identiques, incluant 13 gènes codant pour des protéines (PCGs), 22 gènes tRNA et 2 gènes rRNA, ainsi qu’une importante région non-codante (CR), avec un biais AT élevé. De plus, la distance génétique et l’analyse phylogénétique montrent toutes les deux que le genre Artemia constitue un groupe monophylétique, et que les populations parthénogénétiques d’ Artemia étudiées ici présentent le lien de parenté le plus étroit avec Artemia urmiana. Cette étude fournit l’information de base sur les mitogénomes d’Artemia pour les recherches futures sur la taxonomie et la génétique évolutive du genre, et contribue ainsi à la conservation des ressources en germoplasme d’Artemia.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abatzopoulos, T., B. Zhang & P. Sorgeloos, 1998. Artemia tibetiana: preliminary characterization of a new Artemia species found in Tibet (People’s Republic of China). International study on Artemia. International Journal of Salt Lake Research, 7(1): 41-44.
Asem, A., A. Eimanifar, N. Rastegar-Pouyani, F. Hontoria, S. De Vos, G. Van Stappen & S.-C. Sun, 2020. An overview on the nomenclatural and phylogenetic problems of native Asian brine shrimps of the genus Artemia Leach, 1819 (Crustacea, Anostraca). Zookeys, 902: 1-15.
Asem, A., A. Eimanifar & S.-C. Sun, 2016. Genetic variation and evolutionary origins of parthenogenetic Artemia (Crustacea: Anostraca) with different ploidies. Zoologica Scripta, 45: 421-436.
Asem, A., G. Gajardo, F. Hontoria, C. Yang, C.-Y. Yang, N. Rastegar-Pouyani, S. M. Padhye & P. Sorgeloos, 2023. The species problem in Artemia Leach, 1819 (Crustacea: Anostraca), a genus with sexual species and obligate parthenogenetic lineages. Zoological Journal of the Linnean Society, 202(2): zlad192.
Asem, A., W. Li, P.-Z. Wang, A. Eimanifar, C.-Y. Shen, S. De Vos & G. Van Stappen, 2019. The complete mitochondrial genome of Artemia sinica Cai, 1989 (Crustacea: Anostraca) using next-generation sequencing. Mitochondrial DNA, (Part B) 4: 746-747.
Asem, A., R. Schuster, A. Eimanifar, H. Lu, C. Liu, X. Wu, L. Yao, X. Meng, W. Li & P. Wang, 2021. Impact of colonization of an invasive species on genetic differentiation in new environments: a study on American Artemia franciscana (Crustacea: Anostraca) in the United Arab Emirates. Journal of Ocean University of China, 20: 911-920.
Asem, A., C. Yang, A. Eimanifar, F. Hontoria, I. Varó, F. Mahmoudi, C.-Z. Fu, C.-Y. Shen, N. Rastegar-Pouyani, P.-Z. Wang, W. Li, L. Yao, X. Meng, Y.-T. Dan, D. C. Rogers & G. Gajardo, 2023. Phylogenetic analysis of problematic Asian species of Artemia Leach, 1819 (Crustacea, Anostraca), with the descriptions of two new species. Journal of Crustacean Biology, 43(1): ruad002.
Barigozzi, C., 1974. Artemia: a survey of its significance in genetic problems. Evolutionary Biology, 7: 221-252.
Baxevanis, A. D., I. Kappas & T. J. Abatzopoulos, 2006. Molecular phylogenetics and asexuality in the brine shrimp Artemia. Molecular Phylogenetics and Evolution, 40: 724-738.
Baxevanis, A. D., G. V. Triantaphyllidis, I. Kappas, A. Triantafyllidis, C. D. Triantaphyllidis & T. J. Abatzopoulos, 2005. Evolutionary assessment of Artemia tibetiana (Crustacea, Anostraca) based on morphometry and 16S rRNA RFLP analysis. Journal of Zoological Systematics and Evolutionary Research, 43: 189-198.
Cai, Y., 1989. A re-description of the brine shrimp (Artemia sinica). Wasmann J. Biol., 47: 105-110.
Crease, T. J., 1999. The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea). Gene, 233: 89-99.
Dattilo, A. M., L. Bracchini, L. Carlini, S. Loiselle & C. Rossi, 2005. Estimate of the effects of ultraviolet radiation on the mortality of Artemia franciscana in naupliar and adult stages. International Journal of Biometeorology, 49: 388-395.
Deji, G., C. Zhang, L. Sui & X. Han, 2021. The complete mitochondrial genome of Artemia salina Leach, 1819 (Crustacea: Anostraca). Mitochondrial DNA, (Part B) 6: 3255-3256.
Duan, H., Y. Jin, X. Shao, P. Sun, X. Wang & L. Sui, 2022. Stable primary embryonic cells of Artemia are suitable for tracing the process of V. anguillarum and V. parahaemolyticus infection. Aquaculture, 560: 738598.
Eimanifar, A., G. Van Stappen, B. Marden & M. Wink, 2014. Artemia biodiversity in Asia with the focus on the phylogeography of the introduced American species Artemia franciscana Kellogg, 1906. Molecular Phylogenetics and Evolution, 79: 392-403.
Eimanifar, A., G. Van Stappen & M. Wink, 2015. Geographical distribution and evolutionary divergence times of Asian populations of the brine shrimp Artemia (Crustacea, Anostraca). Zoological Journal of the Linnean Society, 174: 447-458.
Fatsi, P. S. K., S. Hashem, A. Kodama, E. K. Appiah, H. Saito & K. Kawai, 2020. Population genetics and taxonomic signatures of wild Tilapia in Japan based on mitochondrial DNA control region analysis. Hydrobiologia, 847: 1491-1504.
Günther, R. T., 1899. Contributions to the natural history of Lake Urmi, N.W. Persia, and its neighborhood. Zoological Journal of the Linnean Society, 27(177): 345-453.
Han, X., L. Tashi, L. Sui, G. Wang, G. Deji & C. Zhang, 2022. The complete mitochondrial genome of Artemia persimilis Piccinelli and Prosdocimi, 1968 (Crustacea: Anostraca). Mitochondrial DNA, (Part B) 7: 464-465.
Han, X., R. Xu, Y. Zheng, M. Gao & L. Sui, 2019. Development of EST-SSR markers and genetic diversity analysis among three Artemia species from different geographic populations. Crustaceana., 92: 841-851.
Hao, W., A. O. Richardson, Y. Zheng & J. D. Palmer, 2010. Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proceedings of the National Academy of Sciences, 107: 21576-21581.
Jiang, W., T. Zhou, H. Wang, P. Yu, C. Erséus & Y. Cui, 2021. Genetic and morphological analyses uncover a new record and a cryptic species in Allonais (Clitellata: Naididae). Biologia, 76: 1705-1714.
Joseph, J., S. Sreeedharan, S. George & M. M. Antony, 2022. The complete mitochondrial genome of an endemic cichlid Etroplus canarensis from Western Ghats, India (Perciformes: Cichlidae) and molecular phylogenetic analysis. Molecular Biology Reports, 49(4): 3033-3044.
Katoh, K. & D. M. Standley, 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30: 772-780.
Kellogg, V. L., 1906. A new Artemia and its life conditions. Science, 24(619): 594-596.
Kumar, S., G. Stecher & K. Tamura, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874.
Lynch, M., B. Koskella & S. Schaack, 2006. Mutation pressure and the evolution of organelle genomic architecture. Science, 311: 1727-1730.
Maccari, M., F. Amat & A. Gómez, 2013. Origin and genetic diversity of diploid parthenogenetic Artemia in Eurasia. PLoS ONE, 8: e83348.
Maniatsi, S., A. D. Baxevanis, I. Kappas, P. Deligiannidis, A. Triantafyllidis, S. Bougiouklis & T. J. Abatzopoulos, 2011. Is polyploidy a persevering accident or an adaptive evolutionary pattern? The case of the brine shrimp Artemia. Molecular Phylogenetics & Evolution, 58: 353-364.
Meusnier, I., G. A. Singer, J.-F. Landry, D. A. Hickey, P. D. Hebert & M. Hajibabaei, 2008. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics, 9: 214.
Miya, M., Y. Sato, T. Fukunaga, T. Sado, J. Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka & H. Araki, 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2: 150088.
Piccinelli, M. & T. Prosdocimi, 1968. Descrizione tassonomica delle due species Artemia salina L. e Artemia persimilis n. sp. Instituto Lombardo (Rendiconti di Scienze) B, 102: 113-118.
Quraishia, S. F., S. Panneerchelvam, Z. Zainuddin & N. H. Abd Rashid, 2015. Molecular characterization of Malaysian marine fish species using partial sequence of mitochondrial DNA 12S and 16S rRNA markers. Sains Malaysiana, 44: 1119-1123.
Rode, N. O., R. Jabbour-Zahab, L. Boyer, E. Flaven, F. Hontoria, G. Van Stappen, F. Dufresne, C. Haag & T. Lenormand, 2022. The origin of asexual brine shrimps. The American Naturalist, 200(2): E52-E76.
Sorgeloos, P., P. Dhert & P. Candreva, 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200: 147-159.
Subramani, T., K. Gunasagaran & M. Natesan, 2021. Genetic diversity and population structure of Artemia franciscana from southeast coast of India. Journal of Sea Research, 178: 102127.
Taylor, D. J., T. L. Finston & P. D. N. Hebert, 1998. Biogeography of a widespread freshwater crustacean: pseudocongruence and cryptic endemism in the North American Daphnia laevis complex. Evolution, 52: 1648-1670.
Teodoro, S. S. A., M. C. Da Silva Cortinhas, M. C. Proietti, R. C. Costa & L. F. C. Dumont, 2020. High genetic connectivity among pink shrimp Farfantepenaeus paulensis (Pérez-Farfante, 1967) groups along the south-southeastern coast of Brazil. Estuarine, Coastal and Shelf Science, 232: 106488.
Tong, Y., L. Wu, S. P. G. Ayivi, K. B. Storey, Y. Ma, D.-N. Yu & J.-Y. Zhang, 2022. Cryptic species exist in Vietnamella sinensis Hsu, 1936 (Insecta: Ephemeroptera) from studies of complete mitochondrial genomes. Insects, 13: 412.
Wang, W., Q. Luo, H. Guo, P. Bossier, G. Van Stappen, P. Sorgeloos, N. Xin, Q. Sun, S. Hu & J. Yu, 2008. Phylogenetic analysis of brine shrimp (Artemia) in China using DNA barcoding. Genomics Proteomics Bioinformatics, 6: 155-162.
WoRMS, 2024. World Register of Marine Species. Available online at: https://www.marinespecies.org/index.php.
Yang, L., Z. Tan, D. Wang, L. Xue, M. Guan, T. Huang & R. Li, 2014. Species identification through mitochondrial rRNA genetic analysis. Scientific Reports, 4: 4089.
Yu, P., L. Zhou, W.-T. Yang, L. Miao, Z. Li, X.-J. Zhang, Y. Wang & J.-F. Gui, 2021. Comparative mitogenome analyses uncover mitogenome features and phylogenetic implications of the subfamily Cobitinae. BMC Genomics, 22: 50.
Zhang, H., Q. Luo, J. Sun, F. Liu, G. Wu, J. Yu & W. Wang, 2013. Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: assessing molecular changes for high plateau adaptation. Science China Life Sciences, 56: 440-452.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 200 | 200 | 27 |
Full Text Views | 2 | 2 | 0 |
PDF Views & Downloads | 6 | 6 | 0 |
In this study, the complete mitochondrial genomes of three parthenogenetic Artemia populations were sequenced and analysed. The results indicate that these three genomes are similar in length (15 633-15 639 bp). Furthermore, the organization and order of all three genomes are identical, including 13 protein-coding genes (PCGs), 22 tRNA genes and 2 rRNA genes, as well as a major non-coding region (CR), with high AT bias. Furthermore, both the genetic distance and the phylogenetic analysis showed that the genus Artemia constitutes a monophyletic group, and the parthenogenetic Artemia populations here studied show the closest relationship with Artemia urmiana. This study provides baseline information on Artemia mitogenomes for further research on the taxonomy and evolutionary genetics of the genus, and thereby contributes to the conservation of Artemia germplasm resources.
Dans cette étude, les génomes mitochondriaux complets de trois populations parthénogénétiques d’ Artemia ont été séquencés et analysés. Les résultats indiquent que ces trois génomes sont similaires en longueur (15 633 bp-15 639 bp). Par ailleurs, l’organisation et l’ordre de ces trois génomes sont identiques, incluant 13 gènes codant pour des protéines (PCGs), 22 gènes tRNA et 2 gènes rRNA, ainsi qu’une importante région non-codante (CR), avec un biais AT élevé. De plus, la distance génétique et l’analyse phylogénétique montrent toutes les deux que le genre Artemia constitue un groupe monophylétique, et que les populations parthénogénétiques d’ Artemia étudiées ici présentent le lien de parenté le plus étroit avec Artemia urmiana. Cette étude fournit l’information de base sur les mitogénomes d’Artemia pour les recherches futures sur la taxonomie et la génétique évolutive du genre, et contribue ainsi à la conservation des ressources en germoplasme d’Artemia.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 200 | 200 | 27 |
Full Text Views | 2 | 2 | 0 |
PDF Views & Downloads | 6 | 6 | 0 |