Le problème du continu pour la mathématisation galiléenne et la géométrie cavalierienne

in Early Science and Medicine
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

What reasons can a physicist have to reject the principle of a mathematical method, which he nonetheless uses (even in an implicit way) and which he used frequently in his unpublished works? We are concerned here with Galileo’s doubts and objections against Cavalieri’s “geometry of indivisibles.” One may be astonished by Galileo’s behaviour: Cavalieri’s principle is implied by the Galilean mathematization of naturally accelerated motion; some Galilean demonstrations in fact hinge on it. Yet, in the Discorsi (1638) Galileo seems to be opposed to this principle. e fundamental reason of Galileo’s reluctance with respect to Cavalieri’s geometry is to be sought in Galileo’s ideal of intelligibility. It is true that Galilean physics, and more particularly Galileo’s theories of motion and matter, faces deep paradoxes, which Cavalieri’s geometry succeeds to avoid, thanks to a clear determination of the concept of “aggregatum.” But while avoiding these difficulties, Cavalieri does not furnish any solution for the problems raised by Galilean physics.

Le problème du continu pour la mathématisation galiléenne et la géométrie cavalierienne

in Early Science and Medicine

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 12 12 5
Full Text Views 18 18 13
PDF Downloads 3 3 1
EPUB Downloads 0 0 0