Cell wall characterization of windmill palm (Trachycarpus Fortunei) fibers and its functional implications

in IAWA Journal
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The fiber bundles from the lignified leaf sheath of windmill palm (Trachycarpus fortunei) are widely used as natural fibers for various products, and exhibit excellent durability. In this study, the cell wall of windmill palm fibers was characterized using transmission electron microscopy, high resolution field emission scanning electron microscopy, and polarized light microscopy, and chemical analysis to measure lignin content. It was found that (1) the secondary wall was composed of just two layers, outer (equivalent to S1, 0.65 ± 0.12 μm) and inner (equivalent to S2, 1.28 ± 0.30 μm) ones, with a high ratio of S1 to the whole cell wall thickness; (2) the microfibrils of the S1 are orientated in an S-helix (MFA, 127.0° ± 2.0), and those of the S2 in a Z-helix (MFA, 43.7° ± 2.2); and (3) the Klason lignin content of fiber bundles was very high (nearly 40%). It is suggested that these structural and chemical features of windmill palm fibers are involved in their mechanical properties such as high flexibility and elasticity, and also related to their high durability.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 10 10 4
Full Text Views 2 2 2
PDF Downloads 3 3 3
EPUB Downloads 0 0 0