Plant hydraulic architecture through time: lessons and questions on the evolution of vascular systems

In: IAWA Journal

ABSTRACT

Studies of anatomically preserved fossils provide a wealth of information on the evolution of plant vascular systems through time, from the oldest evidence of vascular plants more than 400 million years ago to the rise of the modern angiosperm-dominated flora. In reviewing the key contributions of the fossil record, we discuss knowledge gaps and major outstanding questions about the processes attending the evolution of vascular systems. The appearance and diversification of early vascular plants in the late Silurian-Devonian was accompanied by the evolution of different types of tracheids, which initially improved the hydraulics of conduction but had less of an effect on mechanical support. This was followed in the Devonian and Carboniferous by an increase in complexity of the organization of primary vascular tissues, with different types of steles evolving in response to mechanical, hydraulic, and developmental regulatory constraints. Concurrently, secondary vascular tissues, such as wood, produced by unifacial or bifacial cambia are documented in a wide array of plant groups, including some that do not undergo secondary growth today. While wood production has traditionally been thought to have evolved independently in different lineages, accumulating evidence suggests that this taxonomic breadth reflects mosaic deployment of basic developmental mechanisms, some of which are derived by common ancestry. For most of vascular plant history, wood contained a single type of conducting element: tracheids (homoxyly). However, quantitative (e.g. diameter and length) and qualitative (e.g. pitting type) diversity of these tracheids allowed various taxa to cover a broad range of hydraulic properties. A second type of conducting elements, vessels, is first documented in an extinct late Permian (c. 260 Ma) group. While the putative hydraulic advantages of vessels are still debated, wood characterized by presence of vessels (heteroxyly) would become the dominant type, following the diversification of angiosperms during the Cretaceous.

  • AngyalossyV, AngelesG, PaceMR, LimaAC, Dias-LemeCL, LohmannLG, Madero-VegaC. 2012. An overview of the anatomy, development and evolution of the vascular system of lianas. Plant Ecol. Divers.5: 167–182. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AngyalossyV, PaceMR, LimaAC. 2015. Liana anatomy: a broad perspective on structural evolution of the vascular system. In: SchnitzerSA, BongersF, BurnhamRJ, PutzFE (eds.), Ecology of Lianas: 252–287. Wiley-Blackwell, Oxford, UK. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ApgauaDM, TngDY, CernusakLA, CheesmanAW, SantosRM, EdwardsWJ, LauranceSG. 2017. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Func. Ecol.31: 582–591. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ArnoldCA. 1952. Observations on fossil plants from the Devonian of eastern north America. VI. Xenocladia medullosina. Contr. Mus. Paleontol. Univ. Michigan9: 297–309.

    • Search Google Scholar
    • Export Citation
  • ArtabeA, BreaM. 2003. A new approach to Corystospermales based on Triassic permineralized stems from Argentina. Alcheringa27: 209–229. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaasP, WheelerEA. 1996. Parallelism and reversibility in xylem evolution – a review. IAWA J.17: 351–364. DOI: .

  • BaileyIW. 1916. The structure of the bordered pits of conifers and its bearing upon the tension hypothesis of the ascent of sap. Bot. Gazette62: 133–142.

    • Search Google Scholar
    • Export Citation
  • BaileyIW. 1944. The development of vessels in angiosperms and its significance in morphological research. Am. J. Bot.31: 421–428. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaileyIW. 1953. Evolution of the tracheary tissue of land plants. Am. J. Bot.40: 4–8. DOI: .

  • BauchJ, LieseW, SchultzeR. 1972. The morphological variability of the bordered pit membranes in gymnosperms. Wood. Sci. Technol.6: 165–184. DOI: .

  • BeckCB. 1957. Tetraxylopteris schmidtii gen. et sp. nov., a probable pteridosperm precursor from the Devonian of New York. Am. J. Bot.44: 350–367. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeckCB. 1979. The primary vascular system of Callixylon. Rev. Palaeobot. Palynol.28: 103–115. DOI: .

  • BeckCB. 2005. An introduction to plant structure and development. Cambridge University Press, NY. DOI: .

  • BeckCB, SchmidR, RothwellGW. 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev.48: 691–815. DOI: .

  • BeckCB, SteinWE. 1993. Crossia virginiana gen. et sp. nov., a new member of the Stenokoleales from the Middle Devonian of southwestern Virginia. Palaeontographica229 B: 115–134.

    • Search Google Scholar
    • Export Citation
  • BeckCB, WightDC. 1988. Progymnosperms. In: BeckCB. (ed.), Origin and evolution of gymnosperms: 1–84. Columbia University Press, New York.

    • Search Google Scholar
    • Export Citation
  • BerryEW. 1916. A petrified palm from the Cretaceous of New Jersey. Am. J. Sci.41: 193–197. DOI: .

  • BertrandP.1935. Contribution à l’étude des Cladoxylalées de Saalfeld. Palaeontographica B80: 101–170.

  • BicknerMA, TomescuAMF. 2019. Structurally complex, yet anatomically plesiomorphic: permineralized plants from the Emsian of Gaspé (Quebec, Canada) expand the diversity of Early Devonian euphyllophytes. IAWA J.40: 421–445. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BierhorstD.1958. Vessels in Equisetum. Am. J. Bot.45: 534–537. DOI: .

  • BodnarJ, CoturelEP. 2012. El origen y diversificación del crecimiento cambial atípico en plantas fósiles: procesos del desarrollo involucrado. Bol. Soc. Argent. Bot.47: 33–70.

    • Search Google Scholar
    • Export Citation
  • BodnarJ, RuizDP, ArtabeAEE, MorelEM, GanuzaDG. 2015. Voltziales y Pinales (= Coniferales) de la Formación Cortaderita (Triásico Medio), Argentina, y su implicancia en la reconstrucción de las coníferas triásicas. Rev. Bras. Paleontol.18: 141–160. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BonacorsiNK, LeslieAB. In press. Sporangium position, branching architecture, and the evolution of reproductive morphology in Devonian plants. Int. J. Plant Sci.

    • Search Google Scholar
    • Export Citation
  • BondWJ. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc.36: 227–249. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BouraA, SaulnierG, De FranceschiD, GomezB, Daviero-GomezV, PonsD, GarciaG, RobinN, BoiteauJ-M, ValentinX. 2019. An early record of a vesselless angiosperm from the middle Cenomanian of the Envigne valley (Vienne, Western France). IAWA J.40: 530–550. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BowerFO. 1908. The origin of a land flora. Macmillan & Co., Ltd., London.

  • BowerFO. 1926. The Ferns. Vol. II. Univ. Press,. Cambridge.

  • BoyceCK. 2005. The evolutionary history of roots and leaves. In: HolbrookNM, ZwienieckiMA (eds.),Vascular transport in plants: 479–499. Elsevier, Amsterdam. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BoyceCK, CodyGD, FogelML, HazenRM, AlexanderCMOD, KnollAH. 2003. Chemical evidence for cell wall lignification and the evolution of tracheids in early Devonian plants. Int. J. Plant Sci.164: 691–702. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrennerGJ, BickoffIS. 1992. Palynology and age of the Lower Cretaceous basal Kurnub Group from the coastal plain to the northern Negev of Israel. Palynology16: 137–185. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrodribbTJ, PittermannJ, CoomesDA. 2012. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci.173: 673–694. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BurnhamRJ. 2015. Climbing plants in the fossil record: Paleozoic to Present. In: SchnitzerSA, BongersF, BurnhamRJ, PutzFE (eds.), The Ecology of Lianas: 205–220. Wiley-Black-well, Oxford, UK. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CarlquistS.1975. Ecological strategies of xylem evolution. Univ. Calif Press, . Berkeley, Los Angeles, London.

  • CarlquistS.1996. Wood, bark, and stem anatomy of Gnetales: a summary. Int. J. Plant Sci.157: S58–S76. DOI: .

  • CarlquistS.2012. Wood anatomy of Gnetales in a functional, ecological, and evolutionary context. Aliso30: 33–47. DOI: .

  • CarlquistS, SchneiderEL. 1997. SEM studies on vessels in ferns. 2.Pteridium. Am. J. Bot.84: 581–585. DOI: .

  • Cascales-MiñanaB, GerrienneP, SirjacqB, SteemansP. 2019a. On the hydraulic conductance of three woody Devonian plants. IAWA J.40: 446–465. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cascales-MiñanaB, SteemansP, ServaisT, LepotK, GerrienneP. 2019b. An alternative model for the earliest evolution of vascular plants. Lethaia. DOI: .

  • ChinK, Estrada-RuizE, WheelerEA, UpchurchGRJr, WolfeDG. 2019. Early angiosperm woods from the mid-Cretaceous (Turnonian) of New Mexico, USA: Paraphyllanthoxylon, two new taxa, and unusual preservation. Cretaceous Research98: 292–304. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChoatB, CobbAR, JansenS. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol.177: 608–626. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChomickiG, CoiroM, RennerSS. 2017. Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. Ann. Bot.120: 855–891. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CichanMA. 1985. Vascular cambium and wood development in Carboniferous plants. II. Spenophyllum plurifoliatum Williamson and Scott (Sphenophyllales). Bot. Gaz.146: 395–403. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CichanMA. 1986. Conductance in the wood of selected Carboniferous plants. Paleobiology12: 302–310. DOI: .

  • CichanMA, TaylorTN. 1982. Vascular cambium development in Sphenophyllum: a Carboniferous arthrophyte. IAWA Bull. n. s.3: 155–160. DOI: .

  • CichanMA, TaylorTN. 1990. Evolution of cambium in geologic time – a reappraisal. In: IqbalM (ed.), The vascular cambium: 213–228. Research Studies Press/Wiley, Taunton, England/New York.

    • Search Google Scholar
    • Export Citation
  • CichanMA, TaylorTN, SmootEL. 1981. The application of scanning electron microscopy in the characterization of Carboniferous lycopod wood. Scanning Electron Microscopy3: 197–201.

    • Search Google Scholar
    • Export Citation
  • CoiffardC, GomezB, Daviero-GomezV, DilcherDL. 2012. Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proc. Nat. Acad. Sci.109: 20955–20959. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CranePR. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Mo. Bot. Gard.72: 716–793. DOI: .

  • CrepetWL, NiklasKJ. 2019 (in press). The evolution of early vascular plant complexity. Int. J. Plant Sci.

  • CriéL.1892. Recherches sur les Palmiers silicifiés des terrains crétacés d’Anjou. Bull. Soc. Etudes Scient. Angers.21: 99.

  • CruiziatP, CochardH, AméglioT. 2002. Hydraulic architecture of trees: main concepts and results. Ann. For. Sci.59: 723–752. DOI: .

  • DecombeixA-L, BomfleurB, TaylorEL, TaylorTN. 2014. New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica. Rev. Palaeobot. Palynol.203: 22–34. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DecombeixA-L, Meyer-BerthaudB, GaltierJ, TalentJ, MawsonR. 2011. Diversity of arborescent lignophytes in the Tournaisian vegetation of Queensland (Australia): paleoecological and paleogeographical significance. Palaeog. Palaeoclimatol. Palaeoecol.301: 39–55. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelevoryasT.1964. Ontogenetic studies of fossil plants. Phytomorphology14: 299–314.

  • DoyleJA, DonoghueMJ. 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot. Rev.52: 331–429. DOI: .

  • DuerdenH.1934. On the occurrence of vessels in Selaginella. Ann. Bot.48: 459–465. DOI:

  • DunnMT. 2006. A review of permineralized seed fern stems of the Upper Paleozoic. J. Torrey Bot. Soc.133: 20–32. DOI: .

  • DuteRR. 2015. Development, structure, and function of torus–margo pits in conifers, ginkgo and dicots. In: HackeU (ed.), Functional and ecological xylem anatomy: 77–102. Springer, Cham. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EdwardsD.2003. Xylem in early tracheophytes. Plant Cell Environ.26: 57–72. DOI: .

  • EdwardsD, DaviesECW. 1976. Oldest recorded in situ tracheids. Nature263: 494–495. DOI: .

  • EdwardsD, DaviesECW, AxeL. 1992. A vascular conducting strand in the early land plant Cooksonia. Nature357: 683–685. DOI: .

  • EdwardsD, KenrickP, DolanL. 2017. History and contemporary significance of the Rhynie cherts - our earliest preserved terrestrial ecosystem. Phil.Trans. Roy. Soc. B 373: 20160489. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EdwardsD, LiC-S, RavenJA. 2006. Tracheids in an early vascular plant: a tale of two branches. Bot. J. Linn. Soc.150: 115–130. DOI: .

  • EggertDA. 1961. The ontogeny of Carboniferous arborescent Lycopsida. Palaeontographica B108: 43–92.

  • EsauK.1965. Plant anatomy. Ed. 2. Wiley & Sons, New York, London, Sydney.

  • FeildTS, ArensNC. 2007. The ecophysiology of early angiosperms. Plant Cell Environ.30: 291–309. DOI: .

  • FeildTS, BrodribbT, HolbrookNM. 2002. Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution56: 464 – 478. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeildTS, WilsonJP. 2012. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success. Int. J. Plant Sci.173: 596–609. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FisherJB, EwersFW. 1995. Vessel dimensions in liana and tree species of Gnetum (Gnetales). Am. J. Bot.82: 1350–1357. DOI: .

  • FriedmanWE, CookME. 2000. The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data. Phil. Trans. R. Soc. Lond. B355: 857–868. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FriisEM, CranePR, PedersenKR. 2011. Early flowers and angiosperm evolution. Cambridge University Press, Cambridge, UK. DOI: .

  • GaltierJ.1992. On the earliest arborescent gymnosperms. Cour. Forsch.-Inst. Senckenberg147: 119–125.

  • GaltierJ.2010. The origins and early evolution of the megaphyllous leaf. Int. J. Plant Sci.171: 641–661. DOI: .

  • GaltierJ, Meyer-BerthaudB. 2006. The diversification of early arborescent seed ferns. J.Torrey Bot. Soc. 133: 7–19. https://www.jstor.org/stable/20063819.

    • Search Google Scholar
    • Export Citation
  • GenselPG. 2018. Early Devonian woody plants and implications for the early evolution of vascular cambia. In: KringsM, CúneoNR, HarperCJ, RothwellGW (eds.), Transformative paleobotany. Papers to commemorate the life and legacy of Thomas N. Taylor.: 21–33Academic Press/Elsevier. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GenselPG, KotykME, BasingerJF. 2001. Morphology of above- and below-ground structures in the Early Devonian (Pragian-Emasian) plants. In: GenselPG, EdwardsD (eds.). Plants Invade the Land: evolutionary and environmental perspectives: 83–102. Columbia University Press, New York.

    • Search Google Scholar
    • Export Citation
  • GerrienneP, GenselPG. 2016. New data about anatomy, branching, and inferred growth patterns in the Early Devonian plant Armoricaphyton chateaupannense, Montjean-sur-Loire, France. Rev. Palaeobot. Palynol.224: 38–53. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GerrienneP, GenselPG, Strullu-DerrienC, LardeuxH, SteemansP, PrestianniC. 2011. A simple type of wood in two Early Devonian plants. Nature333: 837. DOI:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GiffordEM, FosterAS. 1989. Morphology and evolution of vascular plants Ed. 3. WH Freeman & Co., New York.

  • GonezG, GerrienneP. 2010. A new definition and a lectotypification of the genus CooksoniaLang 1937. Int. J. Plant Sci.171: 199–215. DOI: .

  • GöppertHR, StenzelG. 1881. Die Medulloseae. Eine neue Gruppe der fossilen Cycadeen. Palaeontographica28: 111–128.

  • GrayJ, BoucotAJ. 1977. Early vascular plants: proof and conjecture. Lethaia10: 145–174. DOI: .

  • HackeUG, SperryJS, PittermannJ. 2005. Efficiency versus safety tradeoffs for water conduction in angiosperm vessels versus gymnosperm tracheids. In: HolbrookNM, ZwienieckiMA (eds.), Vascular transport in plants: 333–353. Elsevier, Amsterdam. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HackeUG, SperryJS, PockmanWT, DavisSD, McCullohKA. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia126: 457–461. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeJ, WangS-J, HiltonJ, ShaoL. 2013. Xuanweioxylon scalariforme gen. et sp. nov.: Novel Permian coniferophyte stems with scalariform bordered pitting on secondary xylem tracheids. Rev. Palaeobot. Palynol.197: 152–165. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HerendeenPS, FriisEM, PedersenKR, CranePR. 2017. Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants3: 17015. DOI: .

  • HerendeenPS, WheelerEA, BaasP. 1999. Angiosperm wood evolution and the potential contribution of paleontological data. Bot. Rev.65: 278–300. DOI: .

  • HetheringtonAJ, DolanL. 2018. Rhynie chert fossils demonstrate the independent origin and gradual evolution of lycophyte roots. Curr. Opin. Plant Biol.47: 119–126. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HickeyLJ, DoyleJA. 1977. Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev.43: 3–104. DOI: .

  • HoffmanLA, TomescuAMF. 2013. An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada). Am. J. Bot.100: 754–763. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoldenR.1915. A Jurassic wood from Scotland. New Phytol.14: 205–209. DOI: .

  • HudsonPJ, RazanatsoaJ, FeildTS. 2010. Early vessel evolution and the diverisification of wood function: Insights from Malagasy Canellales. Am. J. Bot.97: 80–93. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CommitteeIAWA. 1989. IAWA List of microscopic features for hardwood identification. IAWA Bull. n. s.10: 219–332.

  • IsnardS, FeildTS. 2015. The evolution of angiosperm lianescence: a perspective from xylem structure-function. In: SchnitzerSA, BongersF, BurnhamRJ, PutzFE (eds.), The Ecology of Lianas: 221–238. Wiley-Blackwell, Oxford, UK. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JansenS, ChoatB, VinckierS, LensF, ScholsP, SmetsE. 2004. Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera. New Phytol.163: 51–59. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JudNA, D’EmicMD, WilliamsSA, MathewsJC, TremaineKM, BhattacharyaJ. 2018. A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous). Science Advances 4: eaar8568. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KenrickP, CranePR. 1991: Water-conducting cells in early fossil land plants: implications for the Early Evolution of Tracheophytes. Bot. Gaz.152: 335–336. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KenrickP, CranePR. 1997. The origin and early diversification of land plants. Smithsonian Institution Press, Washington, D.C.

  • KenrickP, WellmanCH, SchneiderH, EdgecombeGD. 2012. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Phil. Trans. R. Soc. B367: 519–536. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KotykME, BasingerJF, GenselPG, de FreitasTA. 2002. Morphologically complex plant macrofossils from the Late Silurian of Arctic Canada. Am. J. Bot.89: 1004–1013. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LangWH. 1937. On the plant-remains from the Downtonian of England and Wales. Phil. Trans. R. Soc.B227: 245–291. DOI: .

  • LangdaleJA, HarrisonCJ. 2008. Developmental transitions during the evolution of plant form. In: MinelliA, FuscoG (eds.), Evolving pathways. Key themes in evolutionary developmental biology: 299–315. Cambridge University Press, Cambridge, UK.

    • Search Google Scholar
    • Export Citation
  • LiH, TaylorDW. 1999. Vessel-bearing stems of Asovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China. Am. J. Bot.86: 1563–1575. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiH, TaylorEL, TaylorTN. 1996. Permian vessel elements. Science271: 188–189. DOI: .

  • LibertinM, KvacekJ, BekJ, ZarskyV, StorchP. 2018. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nature Plants4: 269271. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LichtA, BouraA, De FranceschiD, DucrocqS, SoeAN, JaegerJJ. 2014. Fossil woods from the late middle Eocene Pondaung Formation, Myanmar. Rev. Paleobot. Palynol.202: 29–46. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LichtA, BouraA, De FranceschiD, UtescherT, SeinC, JaegerJJ. 2015. Late middle Eocene fossil wood of Myanmar: Implications for the landscape and the climate of the Eocene Bengal Bay. Rev. Paleobot. Palynol.216: 44–54. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MartinF.1971. Palynofacies et microfacies du Silurien inférieur à Deerlijk. Bull. de l’Institut Royal des Sciences Naturelles de Belgique, Biologie47: 1–26.

    • Search Google Scholar
    • Export Citation
  • Martínez-CabreraHI, Estrada-RuizE. 2014. Wood anatomy reveals high theoretical hydraulic conductivity and low resistance to vessel implosion in a Cretaceous fossil forest from Northern Mexico. PLoS ONE9: e108866. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MattenLC. 1992. Studies on Devonian plants from New York State: Stenokoleos holmesii n. sp. from the Cairo Flora (Givetian) with an alternative model for lyginopterid seed fern evolution. Cour. Forsch. Inst. Senckenberg147: 75–85.

    • Search Google Scholar
    • Export Citation
  • McCullohKA, SperryJS, AdlerFR. 2003. Water transport in plants obeys Murray's law. Nature421: 939–942. DOI: .

  • Meyer-BerthaudB, DecombeixA-L. 2009. Evolution of first trees: the Devonian strategies. C. R. Palevol8: 155–165. DOI: .

  • MomontN, DecombeixA-L, GerrienneP, PrestianniC. 2016. New information, including anatomy of the secondary xylem, on the genus Brabantophyton (Stenokoleales) from Ronquières (Middle Devonian, Belgium). Rev. Palaeobot. Palynol.234: 44–60. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoreauJD, PhilippeM, ThévenardF. 2019. Flore du Jurassique basal de la ville de Mende (Lozère): synthèse des gisements historiques, nouvelles données sédimentologiques, paléontologiques et paléoenvironnementales. C. R. Palevol18: 159–177. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MorrisJL, PuttickMN, ClarkJW, EdwardsD, KernickP, PresselS, WellmanCH, YangZ, ScheneiderH, DonoghuePCJ. 2018. The timescale of early land plant evolution. Proc. Nat. Acad. Sci.115: E2274 – E2283. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MorrowAC, DuteRR. 1998. Development and structure of pit membranes in the rhizome of the woody fern Botrychium dissectum. IAWA J.19: 429–441. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MosbruggerV.1990. The tree habit in land plants. Lecture Notes in Earth Sciences 28 Springer-Verlag, Berlin. DOI: .

  • MuhammadAF, SattlerR. 1982. Vessel structure of Gnetum and the origin of Angiosperms. Am. J. Bot.69: 1004–1021. DOI: .

  • NamboodiriKK, BeckCB. 1968. A comparative study of the primary vascular system of conifers. III. Stelar evolution in gymnosperms. Am. J. Bot.55: 464 – 472. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NéraudeauD, PerrichotV, BattenDJ, BouraA, GirardV, JeanneauL, ThomasR. 2017. Upper Cretaceous amber from Vendée, north-western France: age dating and geological, chemical, and palaeontological characteristics. Cretac. Res.70: 77–95. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NguyenC, AndrewsA, BaasP, BondJE, AuadM, DuteR. 2017. Pit membranes and their evolution in the Oleinae of the Oleaceae. IAWA J.38: 201–219. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NiklasKJ. 1994. Plant allometry: the scaling of form and process. University of Chicago Press, Chicago.

  • OhtaniJ.1983. SEM investigation on the micromorphology of vessel wall sculptures. Research Bulletin of the College Experiment Forests, College of Agriculture, Hokkaido University40: 323–386.

    • Search Google Scholar
    • Export Citation
  • OhtaniJ, IshidaS. 1978. Pit membrane with torus in dicotyledonous woods [angiosperm tree]. Journal of the Japan Wood Research Society24: 673–675.

    • Search Google Scholar
    • Export Citation
  • PaceMR, Acevedo-RodriguezP, AmorimAM, AngyalossyV. 2018a. Ontogeny, structure and occurrence of interxylary cambia in Malpighiaceae. Flora241: 46–60. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaceMR, AngyalossyV, Acevedo-RodriguezP, WenJ. 2018b. Structure and ontogeny of successive cambia in Tetrastigma (Vitaceae), the host plants of Rafflesiaceae. J. Syst. Evol.56: 394 – 400. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaolilloDJJr. 1963. The developmental anatomy of Isoetes. Illinois Biological Monographs 31. University of Illinois Press, Urbana.

  • PfeilerKC, TomescuAMF. 2018. An Early Devonian permineralized rhyniopsid from the Battery Point Formation of Gaspé (Canada). Bot. J. Linn. Soc.187: 292–302. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PhilippeM, CunyG, BashforthA. 2010. Ecpagloxylon mathiesenii gen. nov. et sp. nov., a Jurassic wood from Greenland with several primitive angiosperm features. Plant Syst. Evol.287: 153–165. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PhilippeM, GomezB, GirardV, CoiffardC, Daviero-GomezV, ThevenardF, Billon-BruyatJ-P, GuiomardM, LatilJ-L, Le LoeuffJ, NéraudeauD, OliveroD, SchlöglJ. 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Paleoworld17: 142–152. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PhillipsTL. 1974. Evolution of vegetative morphology in coenopterid ferns. Ann. Mo. Bot. Gard.61: 427–461. DOI: .

  • PiggKB, TaylorTN. 1993. Anatomically preserved Glossopteris stems with attached leaves from the Central Transantarctic Mountains, Antarctica. Am. J. Bot.80: 500–516. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PittermannJ, ChoatB, JansenS, StuartSA, LynnL, DawsonTE. 2010. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Plant Physiology153: 1919–1931. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PittermannJ, LimmE, RicoC, ChristmanMA. 2011. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytol.192: 449–461. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PittermannJ, SperryJS, HackeUG, WheelerJK, SikkemaEH. 2005. Torus-margo pits help conifers compete with angiosperms. Science310: 1924–1924. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PittermannJ, SperryJS, HackeUG, WheelerJK, SikkemaEH. 2006a. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. Am. J. Bot.93: 1265–1273. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PittermannJ, SperryJS, WheelerJK, HackeUG, SikkemaEH. 2006b. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ.29: 1618–1628. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrestianniC, DecombeixA-L, ThorezJ, FokandD, GerrienneP. 2010. Famennian charcoal of Belgium. Palaeogeogr. Palaeoclimatol. Palaeoecol.291: 60–71. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RavenJA. 1994. Physiological analyses of aspects of the functioning of vascular tissue in early plants. Bot. Journal of Scotland47: 49–64. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RenaultB.1879. Structure comparée de quelques tiges de la flore carbonifère. Nouvelles Annales du Muséum d’Histoire Naturelle2: 213–348.

    • Search Google Scholar
    • Export Citation
  • RößlerR, NollR. 2006. Sphenopsids of the Permian (I): The largest known anatomically pre-served calamite, an exceptional find from the petrified forest of Chemnitz, Germany. Rev. Palaeobot. Palynol.140: 145–162. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RothA, MosbruggerV. 1996. Numerical studies of water conduction in land plants: evolution of early stele types. Paleobiology22: 411–421. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RothwellGW. 1999. Fossils and ferns in the resolution of land plant phylogeny. Bot. Rev.65: 188–218. DOI: .

  • RothwellGW, SandersH, WyattSE, Lev-YadunS. 2008. A fossil record for growth regulation: the role of auxin in wood evolution. Ann. Mo. Bot. Gard. 95: 121–134. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RothwellGW, SerbetR. 1994. Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Syst. Bot.19: 443–482. DOI: .

  • RoweNP, SpeckT. 2004. Hydraulics and mechanics of plants: novelty, innovation and evolution. In: PooleI, HemsleyAR (eds.), The evolution of plant physiology: 297–325. Elsevier Academic Press, Kew, UK. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RubinsteinCV, GerrienneP, de la PunteGS, AstiniRA, SteemansP. 2010. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol.188: 365–369. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SandersH, RothwellGW, WyattSE. 2009. Key morphological alterations in the evolution of leaves. Int. J. Plant Sci.170: 860–868. DOI: .

  • SandersH, RothwellGW, WyattSE. 2011. Parallel evolution of auxin regulation in rooting systems. Plant Sys. Evol.291: 221–225. DOI: .

  • SaulnierG, BouraA, BernardG, Daviero-GomezV, De FranceschiD, PonsD, GarciaG, BoiteauJ-M, ValentinX. 2018. Diversity in Cenomanian forests: an example from the Envigne Valley (Vienne), France. 10th European Palaeobotany and Palynolog Conference, Dublin.

    • Search Google Scholar
    • Export Citation
  • SchecklerSE. 1974. Systematic characters of Devonian ferns. Ann. Mo. Bot. Gard.61: 462–473. DOI: .

  • SchecklerSE. 1976. Ontogeny of progymnosperms. I. Shoots of Upper Devonian Aneurophytales. Can. J. Bot.54: 202–219. DOI: .

  • SchecklerSE. 1978. Ontogeny of progymnosperms. II. Shoots of Upper Devonian Archaeopteridales. Can. J. Bot.56: 3136–3170. DOI: .

  • SchecklerSE, BanksHP. 1971. Proteokalon, a new genus of progymnosperms from the Devonian of New York State and its bearing on phylogenetic trends in the group. Am. J. Bot.58: 874–884. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchmidR.1967. Electron microscopy of wood of Callixylon and Cordaites. Am. J. Bot.54: 720–729. DOI: .

  • SchneiderEL, CarlquistS. 2000. SEM Studies on the vessels of heterophyllous species of Selaginella. J. Torrey Bot. Soc.127: 263–270. DOI: .

  • SchneiderH, PryerK, CranfillR, SmithA, WolfP. 2002. Evolution of vascular plant body plans: a phylogenetic perspective. In: CronkQCB, BatemanRM, HawkinsJA (eds.), Developmental Genetics and Plant Evolution: 330–364. Taylor & Francis, London, UK. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SerbetR, RothwellGW. 1992. Characterizing the most primitive seed ferns. I. A Reconstruction of Elkinsia polymorpha. Int. J. Plant Sci.4: 602–621. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpeckT, VogellehnerD. 1988. Biophysical examinations of the bending stability of various stele types and the upright axes of early “vascular” land plants. Botanica Acta101: 262–268. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpeckT, VogellehnerD. 1992. Biomechanics and maximum height of some Devonian land plants. In: Kovar-EderJ (ed.), Palaeovegetational development in Europe and regions relevant to its palaeofloristic evolution: Proceedings of the Pan-European Palaeobotanical Conference, Vienna, 19–23 September 1991, PEPC1991: 413–422. Museum of Natural History, Vienna, Austria.

    • Search Google Scholar
    • Export Citation
  • SperryJS, HackeUG, PittermannJ. 2006. Size and function in conifer tracheids and angiosperm vessels. Am. J. Bot.93: 1490–1500. DOI: .

  • SperryJS, MeinzerFC, McCullohKA. 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ.31: 632–645. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SteemansP, Le HérisséA, MelvinJ, MillerMA, ParisF, VerniersJ, WellmanCH. 2009. Origin and radiation of the earliest vascular land plants. Science324: 353. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SteinWE. 1993. Modeling the evolution of stelar architecture in vascular plants. Int. J. Plant Sci.154: 229–263. DOI: .

  • SteinWE, BeckCB. 1983. Triloboxylon arnoldii from the Middle Devonian of western New York. Contrib. Mus. Paleontol. Univ. Mich.26: 257–288.

    • Search Google Scholar
    • Export Citation
  • StewartWN, RothwellGW. 1993. Paleobotany and the evolution of plants. Ed. 2. Cambridge University Press, Cambridge, UK.

  • Strullu-DerrienC, KenrickP, TafforeauP, CochardH, BonnemainJ-L, Le HérisséA, LardeuxH, BadelE. 2014. The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Bot. J. Linn. Soc.175: 423–437. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TanrattanaM, BarcziJ-F, DecombeixA-L, Meyer-BerthaudB, WilsonJP. 2019. A new approach for modelling water transport in fossil plants. IAWA J.40: 466–487. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TaylorTN, TaylorEL, KringsM. 2009. Paleobotany: The biology and evolution of fossil plants. Ed. 2. Academic Press, Amsterdam.

  • TaylorWA, WellmanCH. 2009. Ultrastructure of enigmatic phytoclasts (banded tubes) from the Silurian–Lower Devonian: evidence for affinities and role in early terrestrial ecosystems. Palaios24: 167–180. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terreaux de Félice H, Decombeix A-L, Galtier J. In press. Anatomy, affinities, and evolutionary implications of new silicified stems of Sphenophyllum from the early Carboniferous (Mississippian) of France and Germany. Geodiversitas.

  • ThompsonWP. 1918. Independent evolution of vessels in Gnetales and Angiosperms. Bot. Gaz.65: 83–90. DOI: .

  • TianBL, LiHQ. 1992. A new special petrified stem, Guizhouoxylon dahebianense gen. et sp. nov., from Upper Permian in Suicheng district, Guizhou, China. Acta Palaeontol. Sin.31: 336–345[in Chinese with English abstract].

    • Search Google Scholar
    • Export Citation
  • ToledoS, BippusAC, TomescuAMF. 2018. Buried deep beyond the veil of extinction: euphyllophyte relationships at the base of the spermatophyte clade. Am. J. Bot.105: 1264–1285. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TomescuAMF. 2009. Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci.14: 5–12. DOI: .

  • TomescuAMF, GrooverAT. 2019. Mosaic modularity: an updated perspective and research agenda for the evolution of vascular cambial growth. New Phytol. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TruebaS, DelzonS, IsnardS, LensF. 2019. Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. J. Exp. Bot. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TyreeMT, DavisSD, CochardH. 1994. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?IAWA J.15: 335–360. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TyreeMT & EwersFW. 1991. The hydraulic architecture of trees and other woody plants, New Phytol.119: 345–360. DOI: .

  • UngerHR. 1847. Chloris protogæa. Beiträge zur Flora der Vorwelt. W Engelmann, Leipzig. DOI: .

  • Vozenin-SerraC, PonsD. 1990. Intérêts phylogénétique et paléoécologique des structures ligneuses homoxylées découvertes dans le Crétacé inférieur du Tibet méridional. Palaeontographica126B: 107–127.

    • Search Google Scholar
    • Export Citation
  • Vozenin-SerraC, Privé-GillC. 1991. Les terrasses alluviales pléistocènes du Mékong (Cambodge). II. Bois silicifiés hétéroxylés récoltés entre Stung-Treng et Snoul. Rev. Palaeobot. Palynol.68: 87–117. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WellmanCH. 2018. Palaeoecology and palaeophytogeography of the Rhynie chert plants: further evidence from integrated analysis of in situ and dispersed spores. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1739). DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WheelerEA. 1983. Intervascular pit membranes in Ulmus and Celtis native to the United States. IAWA J.4: 79–88. DOI: .

  • WheelerEA, BaasP. 2019. Wood evolution: Baileyan trends and functional traits in the fossil record. IAWA J.40: 488–529. DOI: .

  • WheelerEA, SrivastavaR, ManchesterSR, BaasP. 2017. Surprisingly modern latest Cretaceous– earliest Paleocene woods of India. IAWA J.38: 456–542. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WightDC. 1987. Non-adaptive change in early land plant evolution. Paleobiology13: 208–214. DOI: .

  • WillisKJ. 2017. State of the world’s plants 2017. Report. Royal Botanic Gardens, Kew. https://stateoftheworldsplants.org/.

  • WilsonJP. 2013. Modeling 400 million years of plant hydraulics. The Paleontological Society Papers19: 175–194. DOI: .

  • WilsonJP. 2016. Hydraulics of Psilophyton and evolutionary trends in plant water transport after terrestrialization. Rev. Palaeobot. Palynol.227: 65–76. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilsonJP, KnollAH. 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology36: 335–355. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilsonJP, KnollAH, HolbrookNM, MarshallCR. 2008. Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology34: 472–493. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WithamHTM. 1831. Observations on fossil vegetables accompanied by representation of their internal structure, as seen through the microscope. W Blackwood, Edinburgh & T Cadell, London.

    • Search Google Scholar
    • Export Citation
  • WithamHTM. 1833. The internal structure of fossil vegetables found in the carboniferous and oolitic deposits of Great Britain. A & C Black, Edinburgh. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WoodcockDW, MeyerHW, PradoY. 2019. The Piedra Chamana fossil woods (Eocene, Peru), II. IAWA J.40: 551–595. DOI: .

  • XuH-H, BerryCM, SteinWE, WangY, TangP, FuQ. 2017. Unique growth strategy of the oldest fossil trees. Proc. Nat. Acad. Sci.114: 201708241. DOI: .

  • ZimmermannMH. 1978. Hydraulic architecture of some diffuse-porous trees. Can. J. Bot.56: 2286–2295. DOI: .

  • ZimmermannMH, JejeAA. 1981. Vessel-length distribution in stems of some American woody plants. Can. J. Bot.59: 1882–1892. DOI: .

  • ZimmermannW.1959. Die Phylogenie der Pflanzen. Ed. 2. Gustav Fischer, Stuttgart, Germany.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 131 131 27
Full Text Views 34 34 12
PDF Downloads 28 28 12