Fossil woods from the Eocene–Oligocene (Río Turbio Formation) of southwestern Patagonia (Santa Cruz province, Argentina)

In: IAWA Journal

ABSTRACT

Over 80 samples of fossil woods were collected from numerous outcrops of the Río Turbio Formation, southwestern Patagonia. Preservation of the woods is variable and only about half of these samples could be identified to genus level. The assemblage consists of six types of conifers and four types of dicotyledons, one of them a new species of Caldcluvioxylon (Cunoniaceae). We provide an emended diagnosis of Caldcluvioxylon. A previously described fossil wood from this stratigraphic unit, thought to have affinity with Proteaceae, was re-examined and is described herein as Scalarixylon romeroi sp.nov. Other families recognized in the Río Turbio Formation wood assemblage are Araucariaceae, Podocarpaceae, and Nothofagaceae. Differences in the taxonomic composition of the upper and lower members of the Río Turbio Formation are consistent with the age difference between them according to recent isotopic dating. The diversity of fossil wood is also consistent with the fossil leaves and pollen from each stratigraphic level and most of the taxa are shared with coeval Antarctic fossil wood floras.

  • AnciborE.1989. Determinación xilológica de una raíz petrificada de Proteaceae de la Formación Río Turbio (Eoceno), Santa Cruz, Argentina. Ameghiniana25: 289–295.

    • Search Google Scholar
    • Export Citation
  • AnciborE.1990. Determinación xilológica de la madera fósil de una fagácea, de la Formación Río Turbio (Eoceno), Santa Cruz, Argentina. Ameghiniana27: 179–184.

    • Search Google Scholar
    • Export Citation
  • APGIV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc.181: 1–20.

    • Search Google Scholar
    • Export Citation
  • ArchangelskyS.1969. Estudio del paleomicroplancton de la Formación Río Turbio (Eoceno), provincia de Santa Cruz. Ameghiniana6: 181–218.

    • Search Google Scholar
    • Export Citation
  • ArchangelskyS.1972. Esporas de la Formación Río Turbio (Eoceno). Rev. Mus. La Plata (n.s.). Sec. Pal.39: 65–115.

  • BarredaVD, PalazzesiL. 2007. Patagonian vegetation turnovers during the Paleogene–early Neogene: Origin of arid-adapted floras. Bot. Rev. 73: 31–50. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BengstonP.1988. Open nomenclature. Palaeontology31: 223–227.

  • BergerW.1953. Jungtertiäre Pflanzenreste aus dem Gebiete der Agäis (Lemnos, Thessaloniki). Ann. Géol. Pays Hellén.5: 34–64.

  • BerryEW. 1937. An Upper Cretaceous flora from Patagonia. Johns Hopkins Univ. Stud. Geol.12: 11–32.

  • BoonchaiN, ManchesterSR. 2012. Systematic affinities of Early Eocene petrified woods from Big Sandy Reservoir, Southwestern Wyoming. Int. J. Plant Sci.173: 209–227. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BreaM.1993. Inferencias paleoclimáticas a partir del estudio de los anillos de crecimiento de leños fósiles de la Formación Río Turbio, Santa Cruz, Argentina. I. Nothofagoxylon paraprocera Ancíbor, 1990. Ameghiniana30: 135–141.

    • Search Google Scholar
    • Export Citation
  • BreaM.1995. Ulminium chubutense n. sp. (Lauraceae), leño permineralizado del Terciario inferior de Bahía Solano, Chubut, Argentina. Ameghiniana32: 19–30.

    • Search Google Scholar
    • Export Citation
  • BreaM, ArtabeAE, FranzeseJR, ZucolAF, SpallettiLA, MorelEM, VeigaGD, GanuzaDG. 2015. Reconstruction of a fossil forest reveals details of the palaeoecology, palaeoenvironments and climatic conditions in the late Oligocene of South America. Palaeogeogr. Palaeoclimatol. Palaeoecol.418: 19–42. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BreaM, ZucolAF, IglesiasA. 2012. Fossil plant studies from late Early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina. In: VizcaínoSF, KayRF, BargoMS (eds.), Early Miocene paleobiology in Patagonia: 104–129. CambridgeUniv. Press, Cambridge.

    • Search Google Scholar
    • Export Citation
  • CantrillDJ, PooleI. 2012. The vegetation of Antarctica through geological time. Cambridge Univ Press. Cambridge.

  • CarlquistS.1984. Vessel grouping in dicotyledon wood: Significance and relationship to imperforate tracheary elements. Aliso10: 505–525.

    • Search Google Scholar
    • Export Citation
  • ChaseMW, RevealJL. 2009. A phylogenetic classification of the land plants to accompany APG III. Bot. J. Linn. Soc.161: 122–127. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChristenhuszMJM, RevealJL, FarjonA, GardnerMF, MillRR, ChaseMW. 2011. A new classification and linear sequence of extant gymnosperms. Phytotaxa19: 55–70. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ConwentzH.1881. Fossil Hölzer aus der Sammlung der königlichen geologischen Landesanstalt zu Berlin. Jahrb. der Königlich Preuss. Geol. Landesanstalt und Bergakademie zu Berlin für das Jahr2: 144–171.

    • Search Google Scholar
    • Export Citation
  • CrisafulliA, HerbstR. 2008. Maderas gimnospérmicas de la Formación Solca (Pérmico Inferior), provincia de La Rioja, Argentina. Ameghiniana45: 737–751.

    • Search Google Scholar
    • Export Citation
  • DickisonWC. 1980. Comparative wood anatomy and evolution of the Cunoniaceae. Allertonia2: 281–321.

  • FelixJ.1884. Die Holzopale ungarns in paläophytologische Hinsicht. Mitth. aus dem Jahrbuche der Kgl. Ung. Geol. Anstalt7: 4 – 43.

  • Fernández DA. 2018. Análisis paleoflorístico de la Fm. Río Turbio (Eoceno de la provincia de Santa Cruz) y su relación con los cambios paleoclimáticos globales: evidencias esporopolínicas. PhD Thesis, FCNyM, Universidad Nacional de La Plata, Buenos Aires, Argentina.

  • FernándezDA, PantiC, PalazzesiL, BarredaVD. 2012. La presencia de una familia neotropical (Malpighiaceae) en el extremo más austral de Sudamérica durante el Eoceno. Rev. Bras. Paleontol.15: 386–391. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FosdickJC, BostelmannJE, LeonardJ, UgaldeR, OyarzúnJL, GriffinM. 2015. Timing and rates of foreland sedimentation: New detrital zircon U/Pb geochronology of the Cerro Dorotea, Río Turbio, and Río Guillermo Formations, Magallanes Basin. Actas XIV Congreso Geológico Chileno1: 763–766.

    • Search Google Scholar
    • Export Citation
  • FosdickJC, RomansBW, FildaniA, BernhardtA, CalderónM, GrahamSA. 2011. Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51° 3' S. Geol. Soc. Am. Bull.123: 1679–1698. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FrancisJE. 2000. Fossil wood from Eocene high latitude forests McMurdo Sound, Antarctica. Antarct. Res. Ser.76: 253–260. DOI: .

  • FrancisJE, MarenssiSA, LevyR, HambreyM, ThornV, MohrBAR, BrinkhuisH, WarnaarJ, ZachosJC, BohatyS, DecontoRM. 2009. From Greenhouse to Icehouse – The Eocene/Oligocene in Antarctica. In: FlorindoF, SiegertM (eds.), Antarctic Climate Evolution: 309–368. Elsevier BV. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FrenguelliJ.1941. Nuevos elementos florísticos del Magellaniano de Patagonia austral. Notas del Mus. La Plata-Geol.30: 173–202.

  • GaltierJ, PhillipTL. 1999. The acetate peel technique. In: JonesTP, RoweNP (eds.), Fossil plants and spores: modern techniques: 67–70. Geological Society, London.

    • Search Google Scholar
    • Export Citation
  • GandolfoMA, MarenssiSA, SantillanaSN. 1998. Flora y paleoclima de la Formación La Meseta (Eoceno Medio), isla Marambio (Seymour), Antártida. Paleógeno América del Sur y la Península Antártica. Publicación Especial de la Asociación Paleontológica Argentina5: 155–162.

    • Search Google Scholar
    • Export Citation
  • GonzálezCC, GandolfoMA, ZamaloaMDC, CúneoRN, WilfP, JohnsonKR. 2007. Revision of the Proteaceae macrofossil record from Patagonia, Argentina. Bot. Rev.73: 235–266. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González EstebenetMS, GuersteinGR, CasadíoS. 2015. Estudio bioestratigráfico y paleoambiental de la Formación Río Turbio (Eoceno medio a superior) en el sudoeste de Patagonia (Argentina) basado en quistes de dinoflagelados. Rev. Bras. Paleontol. 18: 429–442. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GottwaldH.1992. Hölzer aus marinen sanden des oberen Eozän Von Helmstedt (Niedersachsen). Palaeontogr. B225: 27–103.

  • GregoryM, PooleI, WheelerEA. 2009. Fossil dicot wood names – an annotated list with full bibliography. IAWA Journal, Supplement 6.

  • GriffinM.1991. Eocene bivalves from the Río Turbio Formation, southwestern Patagonia (Argentina). J. Paleontol.65: 119–146.

  • HünickenMA. 1955. Depósitos neocretácicos y terciarios del extremo SSW de Santa Cruz. Cuenca carbonífera de Río Turbio. Rev. Mus. Arg. Cienc. Nat. Cienc. Geológicas4: 1–164.

    • Search Google Scholar
    • Export Citation
  • HünickenMA. 1967. Flora terciaria de los estratos de Río Turbio, Santa Cruz (niveles plantíferos del arroyo Santa Flavia). Rev. Fac. Cs. Exactas, Fis. y Nat. Cordoba27: 139–227.

    • Search Google Scholar
    • Export Citation
  • IAWA Hardwood Committee. 1989. IAWA List of microscopic features for hardwood identification. IAWA Bull. n.s. 10: 219–332.

  • IAWA Softwood Committee. 2004. IAWA List of microscopic features for softwood identification. IAWA J.25: 1–70. DOI: .

  • InsideWood. 2004-onwards. Published on the Internet. http://insidewood.lib.ncsu.edu/search.

    • Export Citation
  • JohnsonLAS, BriggsBG. 1975. On the Proteaceae – the evolution and classification of a southern family. Bot. J. Linn. Soc.70: 83–182.

    • Search Google Scholar
    • Export Citation
  • KnopfP, SchulzC, LittleDP, StuT, DennisW. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics28: 271–299. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KramerK.1974. Die Tertiären Hölzer Südost-Asiens (unter ausschluss der Dipterocarpaceae). Teil. Palaeontogr. B144: 45–181.

  • KräuselR.1924. Beiträge zur Kenntnis der fossilen Flora Südamerikas. 1. Fossile Hölzer aus Patagonien und benachbarten Gebieten. Ark. för Bot. 19: 1–36.

    • Search Google Scholar
    • Export Citation
  • KräuselR.1939. Ergebnisse der Forschungsreisen von Prof. E. Stromer in den Wüsten Ägyptens. IV. Die fossilen Floren Ägyptens. Abhandl. Bayer. Akad. der Wissenchaften. Math. Abt.47: 1–140.

    • Search Google Scholar
    • Export Citation
  • LeslieAB, BeaulieuJ, HolmanG, CampbellCS, MeiW, RaubesonLR, MathewsS. 2018. An overview of extant conifer evolution from the perspective of the fossil record. Am. J. Bot.105: 1531–1544. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLachlanIR, GassonPE. 2010. PCA of CITES listed Pterocarpus santalinus (Leguminosae) wood. IAWA J.31: 121–138. DOI: .

  • MalumiánN, CaramésA. 1997. Upper Campanian-Paleogene from the Río Turbio coal measures in southern Argentina: Micropaleontology and the Paleocene/Eocene boundary. J. South Am. Earth Sci.10: 189–201.

    • Search Google Scholar
    • Export Citation
  • MartínezLCA, PujanaRR. 2010. Sobre la presencia de Resinaxylon schinusoides Pujana en la Formación San Julián (Oligoceno), Santa Cruz, Patagonia argentina. Ameghiniana47: 535–539. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MeijerJJF. 2000. Fossil woods from the Late Cretaceous Aachen Formation. Rev. Palaeobot. Palynol.112: 297–336. DOI: .

  • MirabelliSL, PujanaRR, MarenssiSA, SantillanaSN. 2018. Conifer fossil woods from the Sobral Formation (lower Paleocene, Western Antarctica). Ameghiniana55: 91–108. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NishidaM.1970. On some fossil plants from Chile, South America. Annu. Rep. Foreign Students’ Coll. Chiba Univ.5: 13–18.

  • NishidaM.1981a. Petrified woods from the Tertiary of Mocha Island. In: NishidaM (ed.), A report of the paleobotanical survey to southern Chile: 31–37. Science Fac., Chiba University.

    • Search Google Scholar
    • Export Citation
  • NishidaM.1981b. Petrified woods from the Tertiary of Quiriquina Island. In: NishidaM (ed.), A report of the paleobotanical survey to southern Chile: 38–40. Science Fac., Chiba Univ.

    • Search Google Scholar
    • Export Citation
  • NishidaM.1984a. The anatomy and affinities of the petrified plants from the Tertiary of Chile II. Araucarioxylon from Quiriquina Island, near Concepción. In: NishidaM (ed.), Contributions to the Botany in the Andes I: 86–90. Academia Scientific Book Inc. Tokyo.

    • Search Google Scholar
    • Export Citation
  • NishidaM.1984b. The anatomy and affinities of the petrified plants from the Tertiary of Chile. III. Petrified woods from Mocha Island, Central Chile. In: NishidaM (ed.), Contributions to the Botany in the Andes I: 96–110. Academia Scientific Book Inc., Tokyo.

    • Search Google Scholar
    • Export Citation
  • NishidaM.1984c. The anatomy and affinities of the petrified plants from the Tertiary of Chile. IV. Dicotyledonous woods from Quiriquina Island, near Concepción. In: NishidaM (ed.), Contributions to the Botany in the Andes I: 111–121. Academia Scientific Book Inc., Tokyo.

    • Search Google Scholar
    • Export Citation
  • NishidaH, KazuhikoU, TeradaK, YamadaT, RancusiMH, HinojosaLF. 2006. Preliminary report on permineralized plant remains possibly from the Paleocene Chorrillo Chico Formation, Magallanes region, Chile. In: NishidaH (ed.), Post-Cretaceous floristic changes in southern Patagonia, Chile: 11–28. Faculty of Science and Engineering, Chuo University, Tokyo.

    • Search Google Scholar
    • Export Citation
  • NishidaM, NishidaH. 1987. Petrified woods from the Upper Cretaceous of the Quiriquina Island, near Concepción, Chile. In: NishidaM (ed.), Contributions to the Botany in the Andes II: 5–11. Academia Scientific Book Inc., Tokyo.

    • Search Google Scholar
    • Export Citation
  • NishidaM, NishidaH, Nasa T. 1988. Anatomy and affinities of the petrified plants from the Tertiary of Chile (V)101: 293–309.

  • NishidaM, NishidaH, OhsawaT. 1989. Comparison of the petrified woods from the Cretaceous and Tertiary of Antarctica and Patagonia. Proceedings NIPR Symposium on Polar Biology2: 198–212.

    • Search Google Scholar
    • Export Citation
  • NishidaM, OhsawaT, Nishida H. 1990. Anatomy and affinities of the petrified plants from the Tertiary of Chile (VI)103: 255–268.

  • OhC, PhilippeM, McLoughlinS, WooJ, LeppeM, TorresT, ParkTYS, ChoiHG. In press. New fossil woods from lower Cenozoic volcano-sedimentary rocks of the Fildes Peninsula, King George Island, and their implications for the trans-Antarctic Peninsula Eocene climatic gradient. Papers in Palaeontology.

    • Search Google Scholar
    • Export Citation
  • OskolskiAA, KodrulTM, JinJ. 2012. Altingioxylon hainanensis sp. nov.: earliest fossil wood record of the family Altingiaceae in Eastern Asia and its implications for historical biogeography. Plant Syst. Evol.298: 661–669. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PantiC. 2010. Diversidad Florística durante el Paleógeno en Patagonia Austral. PhD Thesis, FCEyN, Universidad de Buenos Aires, Argentina.

    • Search Google Scholar
    • Export Citation
  • PantiC.2014. Myrtaceae fossil leaves from the Río Turbio Formation (Middle Eocene), Santa Cruz Province, Argentina. Hist. Biol.28: 459–469. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PantiC.2018. Fossil leaves of subtropical lineages in the Eocene –? Oligocene of southern Patagonia. Hist. Biol. DOI: .

  • PantiC, PujanaRR, ZamaloaM del C, RomeroEJ. 2012. Araucariaceae macrofossil record from South America and Antarctica. Alcheringa36: 1–22. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PattonRT. 1958. Fossil wood from Victorian brown coal. Proc. R. Soc. Victoria70: 129–143.

  • PetriellaB.1972. Estudio de maderas petrificadas del Terciario Inferior del área central de Chubut (Cerro Bororó). Rev. del Mus. La Plata. Sec. Paleontol.41: 159–254.

    • Search Google Scholar
    • Export Citation
  • PhilippeM, BamfordMK. 2008. A key to morphogenera used for Mesozoic conifer-like woods. Rev. Palaeobot. Palynol.148: 184–207. DOI: .

  • PooleI.2002. Systematics of Cretaceous and Tertiary Nothofagoxylon: implications for southern hemisphere biogeography and evolution of the Nothofagaceae. Aust. Syst. Bot.15: 247–276. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PooleI, CantrillD. 2001. Fossil woods from Williams Point beds, Livingston Island, Antarctica: a late Cretaceous southern high latitude flora. Palaeontology44: 1081–1112. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PooleI, GottwaldH. 2001. Monimiaceae sensu lato, an element of Gondwanan polar forests: Evidence from the Late Cretaceous-Early Tertiary wood flora of Antarctica. Aust. Syst. Bot.14: 207–230. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PooleI, MennegaAMW, CantrillDJ. 2003. Valdivian ecosystems in the Late Cretaceous and Early Tertiary of Antarctica: Further evidence from myrtaceous and eucryphiaceous fossil wood. Rev. Palaeobot. Palynol.124: 9–27. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrakashU, BřezinováD, BůžekC. 1971. Fossil woods from the Doupovské Hory and Ceské Stredohorí Mountains in northern Bohemia. Palaeontogr. B133: 103–128.

    • Search Google Scholar
    • Export Citation
  • PujanaRR. 2007. New fossil woods of Proteaceae from the Oligocene of southern Patagonia. Aust. Syst. Bot.20: 119–125. DOI: .

  • PujanaRR. 2009. Fossil woods from the Oligocene of southwestern Patagonia (Río Leona Formation). Atherospermataceae, Myrtaceae, Leguminosae and Anacardiaceae. Ameghiniana46: 523–535.

    • Search Google Scholar
    • Export Citation
  • PujanaRR, IglesiasA, RaffiME, OliveroEB. 2018. Angiosperm fossil woods from the Upper Cretaceous of Western Antarctica (Santa Marta Formation). Cretac. Res.90: 349–362. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PujanaRR, MarenssiSA, SantillanaSN. 2015. Fossil woods from the Cross Valley Formation (Paleocene of Western Antarctica): Araucariaceae-dominated forests. Rev. Palaeobot. Palynol.222: 56–66. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PujanaRR, RaffiME, OliveroEB. 2017. Conifer fossil woods from the Santa Marta Formation (Upper Cretaceous), Brandy Bay, James Ross Island, Antarctica. Cretac. Res.77: 28–38. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PujanaRR, RuizDP. 2017. Podocarpoxylon Gothan reviewed in light of a new species from the Eocene of Patagonia. IAWA J.38: 220–244. DOI: .

  • PujanaRR, RuizDP, MartínezLCA, ZhangY. 2016. Proposals for quantifying two characteristics of tracheid pit arrangement in gymnosperm woods. Rev. Mus. Arg. Cs. Nat.18: 117–124. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PujanaRR, SantillanaSN, MarenssiSA. 2014. Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): Evidence of Podocarpaceae-dominated forests. Rev. Palaeobot. Palynol.200: 122–137. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RalloM, MontecinosD, MundacaT. 2008. Perforaciones escalariformes en vasos de árboles nativos de Chile. Maderas. Cienc. y Tecnol.10: 163–172. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RancusiMH, NishidaM, NishidaH. 1987. Xylotomy of important Chilean woods. In: NishidaM. (ed.), Contributions to the botany in the Andes II: 68–153. Academa Scientific Book Inc., Tokyo.

    • Search Google Scholar
    • Export Citation
  • RomeroEJ. 1970. Ulminium atlanticum n. sp. tronco petrificado de Lauraceae del Eoceno de Bahía Solano, Chubut, Argentina. Ameghiniana7: 205–224.

    • Search Google Scholar
    • Export Citation
  • RomeroEJ. 1977. Polen de gimnospermas y fagáceas de la Formación Río Turbio (Eoceno), Santa Cruz, Argentina. Fundación para la Educación, la Ciencia y la Cultura, Buenos Aires, Argentina.

    • Search Google Scholar
    • Export Citation
  • RomeroEJ, ZamaloaMC. 1985. Polen de angiospermas de la Formación Río Turbio (Eoceno), provincia de Santa Cruz, República Argentina. Ameghiniana22: 43–51.

    • Search Google Scholar
    • Export Citation
  • RößlerR, PhilippeM, Van Konijenburg-Van CittertJHA, McLoughlinS, SakalaJ, ZijlstraG, BamfordMK, BooiM, BreaM, CrisafulliA, DecombeixA-L, DolezychM, DutraTL, EstebanLG, FalaschiP, FengZ, GnaedingerSC, SommerMG, HarlandM, HerbstR, IamandeiE, IamandeiS, JiangH, KunzmannL, KurzaweF, MerlottiS, NaugolnykhS, NishidaH, NollR, OhC, OrlovaO, de PalaciosPP, PooleI, PujanaRR, RajanikanthA, RybergP, TeradaK, ThévenardF, TorresT, VeraEI, ZhangW, ZhengS. 2014. Which name(s) should be used for Araucaria-like fossil wood? – Results of a poll. Taxon63: 177–184. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RoySK, StewartWN. 1971. Oligocene woods from the Cypress Hills Formation in Saskatchewan, Canada. Can. J. Bot.49: 1867–1885.

  • SalardM.1961. Contribution à l’étude paléoxylologique de la Patagonie (II). Rev. Générale Bot.68: 234–270.

  • ScherHD, MartinEE. 2006. Timing and climatic consequences of the opening of Drake Passage. Science312: 428–430. DOI: .

  • SüssH.1960. Ein Monimiaceen-Holz aus der oberen Kreide Deutschlands, Hedycaryoxylon subaffine (Vater) nov. comb. Senckenbergiana Lethaea41: 317–330.

    • Search Google Scholar
    • Export Citation
  • TeradaK, AsakawaTO, NishidaH. 2006a. Fossil woods from Arroyo Cardenio, Chile Chico Province, Aisen (XI) Region, Chile. In: NishidaH (ed.), Post-Cretaceous floristic changes in Southern Patagonia, Chile: 57–65. Faculty of Science and Engineering, Chuo University.

    • Search Google Scholar
    • Export Citation
  • TeradaK, AsakawaTO, NishidaH. 2006b. Fossil woods from the Loreto Formation of Las Minas, Magallanes (XII) region, Chile. In: NishidaH (ed.), Post-Cretaceous floristic changes in Southern Patagonia, Chile: 91–101. Faculty of Science and Engineering, Chuo University.

    • Search Google Scholar
    • Export Citation
  • TeradaK, AsakawaTO, NishidaH. 2006c. Fossil wood assemblage from Cerro Dorotea, Última Esperanza, Magallanes (XII) region, Chile. In: NishidaH (ed.), Post-Cretaceous floristic changes in Southern Patagonia, Chile: 67–90. Faculty of Science and Engineering, Chuo University.

    • Search Google Scholar
    • Export Citation
  • TorresT. 1990. Étude paléobotanique du Tertiaire des îles Roi Georges et Seymour, Antarctique. PhD Thesis, Université Claude Bernard Lyon I, Lyon, France.

    • Search Google Scholar
    • Export Citation
  • TorresT, Biro-BagoczkyL. 1986. Xilotomía de coníferas fósiles de la isla Quiriquina, Chile. Comunicaciones37: 65–80.

  • TorresT, LemoigneY. 1988. Maderas fósiles terciarias de la Formación Caleta Arctowski, Isla Rey Jorge, Antártica. Serie Científica INACH37: 69–107.

    • Search Google Scholar
    • Export Citation
  • TorresT, LemoigneY. 1989. Hallazgos de maderas fósiles de Angiospermas y Gimnospermas del Cretácico Superior en punta Williams, Isla Livingston, islas Shetland del Sur, Antártica. Serie Científica INACH39: 9–29.

    • Search Google Scholar
    • Export Citation
  • VajdaV, LindersonH, McLoughlinS. 2016. Disrupted vegetation as a response to Jurassic volcanism in southern Sweden. In: KearBP, LindgrenJ, HurumJH, MilanJ, VajdaV (eds.), Mesozoic biotas of Scandinavia and its Arctic Territories: SP434 –17. Geological Society, London, Special Publications, 434. The Geological Society of London, London. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der BurghJ.1964. Hölzer der Niederrheinischen Braunkohlenformation, I. Hölzer der Braunkohlengrube “Anna” zu Haanrade (Niederländisch Limburg). Acta Bot. Neerl.13: 250–301. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der BurghJ.1973. Hölzer der Niederrheinischen Braunkohlenformation, 2. Hölzer der Braunkohlengruben “Maria Theresia” zu Herzogenrath, “Zukunft West” zu Eschweiler und “Victor” (Zülpich Mitte) zu Zülpich. Nebst einer systematisch-anatomischen Bearbeitung der Gattung Pinus. Rev. Palaebot. Palynol.15: 73–275. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VaterH.1884. Die fossilen Hölzer der Phosphoritlager des herzogthums Braunschweig. Zeitschrift Deutsch. Geol. Gesellschaft36: 783–853.

    • Search Google Scholar
    • Export Citation
  • VentoB, PrámparoMB. 2018. Angiosperm association from the Río Turbio Formation (Eocene–? Oligocene) Santa Cruz, Argentina: revision of Hünicken’s (1955) fossil leaves collection. Alcheringa42: 125–153. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WheelerEA. 2011. InsideWood – a web resource for hardwood anatomy. IAWA J.32: 199–211. DOI: .

  • WheelerEA, ManchesterSR. 2014. Middle Eocene trees of the Clarno Petrified Forest, John Day Fossil Beds National Monument, Oregon. PaleoBios30: 105–114. https://escholarship.org/uc/item/20n1p06q.

    • Search Google Scholar
    • Export Citation
  • WilfP, JohnsonKR, CúneoRN, SmithME, SingerBS, GandolfoMA. 2005. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. The American Naturalist165: 634–650. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZamaloaMC, RomeroEJ, StincoL. 1987. Polen y esporas de la Formación La Meseta (Eoceno Superior–Oligoceno) de la isla Marambio (Seymour) Antártida.VII Simposio Argentino de Paleobotánica y Palinología: 199–203.

    • Search Google Scholar
    • Export Citation
  • ZhangS, WangQ. 1994. Paleocene petrified wood on the west side of Collins Glacier in the King George Island, Antarctica. In: ShenS (ed.), Stratigraphy and Palaeontology of Fildes Peninsula, King George Island, Antarctica: 231–238. State Antarctica Committee Monograph 3.

    • Export Citation
  • ZhangY, WangJ, LiuL, LiN. 2010. Protophyllocladoxylon jingyuanense sp. nov., a gymnospermous wood of the Serpukhovian (Late Mississippian) from Gansu, Northwest China. Acta Geol. Sin.84: 257–268. DOI: .

    • Crossref
    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 73 73 30
Full Text Views 10 10 2
PDF Downloads 6 6 2