Pit membranes in bordered pits of tracheary elements of angiosperm xylem represent primary cell walls that undergo structural and chemical modifications, not only during cell death but also during and after their role as safety valves for water transport between conduits. Cellulose microfibrils, which are typically grouped in aggregates with a diameter between 20 to 30 nm, make up their main component. While it is clear that pectins and hemicellulose are removed from immature pit membranes during hydrolysis, recent observations of amphiphilic lipids and proteins associated with pit membranes raise important questions about drought-induced embolism formation and spread via air-seeding from gas-filled conduits. Indeed, mechanisms behind air-seeding remain poorly understood, which is due in part to little attention paid to the three-dimensional structure of pit membranes in earlier studies. Based on perfusion experiments and modelling, pore constrictions in fibrous pit membranes are estimated to be well below 50 nm, and typically smaller than 20 nm. Together with the low dynamic surface tensions of amphiphilic lipids at air-water interfaces in pit membranes, 5 to 20 nm pore constrictions are in line with the observed xylem water potentials values that generally induce spread of embolism. Moreover, pit membranes appear to show ideal porous medium properties for sap flow to promote hydraulic efficiency and safety due to their very high porosity (pore volume fraction), with highly interconnected, non-tortuous pore pathways, and the occurrence of multiple pore constrictions within a single pore. This three-dimensional view of pit membranes as mesoporous media may explain the relationship between pit membrane thickness and embolism resistance, but is largely incompatible with earlier, two-dimensional views on air-seeding. It is hypothesised that pit membranes enable water transport under negative pressure by producing stable, surfactant coated nanobubbles while preventing the entry of large bubbles that would cause embolism.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Altaner CM , Thomas LH , Fernandes AN , Jarvis MC . 2014. How cellulose stretches: Synergism between covalent and hydrogen bonding. Biomacromolecules 15: 791–798. DOI: .
Askenasy E. 1895. Über das Saftsteigen. In: Sitzungsber. Heidelberg. Akad. Wiss. Heidelberg: Carl Winter; p. 23.
Bamber RK . 1961. Staining reaction of the pit membrane of wood cells. Nature 191: 409– 410. DOI: .
Barnett JR . 1981. Xylem cell development. In: Secondary xylem cell development. Castle House Publications Ltd, Tunbridge Wells.
Barnett JR . 1982. Plasmodesmata and pit development in secondary xylem elements. Planta 155: 251–260. DOI: .
Barnett JR , Harris JM . 1975. Early stages of bordered pit formation in radiata pine. Wood Sci. Technol. 9: 233–241. DOI: .
Bartlett MK , Klein T , Jansen S , Choat B , Sack L . 2016. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. PNAS 113: 13098–13103.
Benayoun J , Catesson AM , Czaninski Y . 1981. A cytochemical study of differentiation and breakdown of vessel end walls. Ann. Bot. 47: 687–698.
Bliss MC . 1921. The vessel in seed plants. Bot. Gaz. 71: 314–326. DOI: .
Boatwright A , Hughes S , Barry J . 2015. The height limit of a siphon. Sci. Rep. 5: 16790. DOI: .
Bouche PS , Larter M , Domec J-C , Burlett R , Gasson P , Jansen S , Delzon S . 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. J. Exp. Bot. 65: 4419–4431. DOI: .
Bourdon M , Kalmbach L , Helariutta Y . 2017. Plant vasculature: selective membrane-to-microtubule tethering patterns the xylem cell wall. Curr. Biol. 27: R842−R844. DOI: .
Brodersen CR , McElrone AJ , Choat B , Lee EF , Shackel KA , Matthews MA . 2013. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol. 161: 1820–1829. DOI: .
Brodribb TJ , Bienaimé D , Marmottant P . 2016. Revealing catastrophic failure of leaf networks under stress. PNAS 113: 4865–4869. DOI: .
Buesch C , Smith SW , Eschbach P , Conley JF , Simonsen J . 2016. The microstructure of cellulose nanocrystal aerogels as revealed by transmission electron microscope tomography. Biomacromolecules 17: 2956–2962. DOI: .
Buono RA , Hudecek R , Nowack MK . 2019. Plant proteases during developmental programmed cell death. J. Exp. Bot. 70: 2097–2112. DOI: .
Butterfield BG . 1995. Vessel element differentiation. In: The Cambial Derivatives. Gebrüder Borntraeger, Berlin, Stuttgart.
Capron M , Tordjeman Ph , Charru F , Badel E , Cochard H . 2014. Gas flow in plant microfluidic networks controlled by capillary valves. Phys. Rev. E. 89: 033019. DOI: .
Carlquist S , Schneider EL . 2001. Vessels in ferns: structural, ecological, and evolutionary significance. Am. J. Bot. 88: 1–13. DOI: .
Chaffey N , Barlow P , Barnett J . 2000. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of microfilaments. Planta 210: 890–896. DOI: .
Chaffey N , Barnett JR , Barlow PW . 1997. Cortical microtubule involvement in bordered pit formation in secondary xylem vessel elements of Aesculus hippocastanum L. (Hippocastanaceae): A correlative study using electron microscopy and indirect immunofluorescence microscopy. Protoplasma 197: 64–75. DOI: .
Chaffey N , Barnett JR , Barlow PW . 1999. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of cortical microtubules. Planta 208: 19–30. DOI: .
Chaffey N , Cholewa E , Regan S , Sundberg B . 2002. Secondary xylem development in Arabidopsis: a model for wood formation. Physiol. Plant. 114: 594–600. DOI: .
Choat B , Badel E , Burlett R , Delzon S , Cochard H , Jansen S . 2016. Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiol. 170: 273–282. DOI: .
Choat B , Ball M , Luly J , Holtum J . 2003. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiol. 131: 41–48. DOI: .
Choat B , Brodie TW , Cobb AR , Zwieniecki MA , Holbrook NM . 2006. Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. Am. J. Bot. 93: 993–1000. DOI: .
Choat B , Cobb AR , Jansen S . 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol. 177: 608–626. DOI: .
Choat B , Jansen S , Brodribb TJ , Cochard H , Delzon S , Bhaskar R , Bucci SJ , Feild TS , Gleason SM , Hacke UG , et al..2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752–755. DOI: .
Choat B , Jansen S , Zwieniecki MA , Smets E , Holbrook NM . 2004. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J. Exp. Bot. 55: 1569–1575. DOI: .
Christensen-Dalsgaard KK , Tyree MT , Mussone PG , Meinzer F . 2011. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species. Tree Physiol. 31: 361–368. DOI: .
Christman MA , Sperry JS . 2010. Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ. 33: 431–443. DOI: .
Dixon HH . 1914. Transpiration and the ascent of sap in plants. Macmillan and Co., London.
Dixon HH , Joly J . 1895. On the ascent of sap. Philos. Trans. Royal Soc. Lond. (B) 186: 563–576. DOI: .
Donaldson LA , Cairns M , Hill SJ . 2018. Comparison of micropore distribution in cell walls of softwood and hardwood xylem. Plant Physiol. 178: 1142–1153. DOI: .
Donaldson LA , Kroese HW , Hill SJ , Franich RA . 2015. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy. J. Microsc. 259: 228–236. DOI: .
Dória L , Podadera D , Lima R , Lens F , Marcati C . 2019. Axial sampling height outperforms site as predictor of wood trait variation. IAWA J. 40: 191–214. DOI: .
Du G , Feng F , Wang Y , Tyree MT . 2019. Do nano-particles cause recalcitrant vulnerability curves in Robinia? Testing with a four-cuvette Cochard rotor and with water extraction curves. Tree Physiol. 39: 156–165. DOI: .
Dusotoit-Coucaud A , Brunel N , Tixier A , Cochard H , Herbette S . 2014. Hydrolase treatments help unravel the function of intervessel pits in xylem hydraulics. Physiol. Plant. 150: 388–396. DOI: .
Dute R , Daniel Jandrlich M , Thornton S , Callahan N , Hansen C . 2011. Tori in species of Diarthron, Stellera and Thymelaea (Thymelaeaceae). IAWA J. 32: 54–66. DOI: .
Dute R , Patel J , Jansen S . 2010. Torus-bearing pit membranes in Cercocarpus. IAWA J. 3153–3166. DOI: .
Ellerby DJ , Ennos AR . 1998. Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates. J. Exp. Bot. 49: 979–985. DOI: .
Escamez S , Stael S , Vainonen JP , Willems P , Jin H , Kimura S , Van Breusegem F , Gevaert K , Wrzaczek M , Tuominen H . 2019. Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis. J. Exp. Bot. 70: 2199–2210. DOI: .
Ewart AJ . 1906. The ascent of water in trees. Philos. Trans. Royal Soc. Lond. (B) 198: 41–85.
Fardim P , Moreno T , Holmbom B . 2005. Anionic groups on cellulosic fiber surfaces investigated by XPS, FTIR-ATR, and different sorption methods. J. Colloid Interface Sci. 290: 383–391. DOI: .
Funada R. 2000. Control of wood structure. In: Nick P (ed.) Plant Microtubules: Potential for Biotechnology. Springer Verlag, Berlin, Heidelberg.
Gierlinger N , Schwanninger M , Reinecke A , Burgert I . 2006. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7: 2077–2081. DOI: .
Gor GY , Huber P , Bernstein N . 2017. Adsorption-induced deformation of nanoporous materials -A review. Appl. Phys. Rev. 4: 011303. DOI: .
Guo F , Altaner CM . 2018. Molecular deformation of wood and cellulose studied by near infrared spectroscopy. Carbohydr. Polym. 197: 1–8. DOI: .
Hacke UG , Sperry JS , Wheeler JK , Castro L . 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26: 689–701. DOI: .
Hacke U , Stiller V , Sperry J , Pittermann J , McCulloh KA . 2001. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol. 125: 779–786. DOI: .
Herbette S , Bouchet B , Brunel N , Bonnin E , Cochard H , Guillon F . 2015. Immunolabeling of intervessel pits for polysaccharides and lignin helps in understanding their hydraulic properties in Populus tremula × alba. Ann. Bot. 115: 187–199. DOI: .
Hillabrand RM , Hacke UG , Lieffers VJ . 2016. Drought-induced xylem pit membrane damage in aspen and balsam poplar. Plant Cell Environ. 39: 2210–2220. DOI: .
Hinterstoisser B , Akerholm M , Salmén L . 2003. Load distribution in native cellulose. Bio-macromolecules 4: 1232–1237. DOI: .
Holler M , Raabe J , Diaz A , Guizar-Sicairos M , Wepf R , Odstrcil M , Shaik FR , Panneels V , Menzel A , Sarafimov B , et al..2018. OMNY-A tOMography Nano crYo stage. Rev. Sci. Instrum. 89: 043706. DOI: .
Iakimova ET , Woltering EJ . 2017. Xylogenesis in zinnia (Zinnia elegans) cell cultures: unravelling the regulatory steps in a complex developmental programmed cell death event. Planta 245: 681–705. DOI: .
Ito J , Fukuda H . 2002. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14: 3201–3211. DOI: .
Jansen S , Choat B , Pletsers A . 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am. J. Bot. 96: 409–419. DOI: .
Jansen S , Dute R , Allison J , Rabaey D . 2010. Torus-bearing pit membranes in species of Osmanthus. IAWA J. 31: 217–226. DOI: .
Jansen S , Klepsch M , Li S , Kotowska M , Schiele S , Zhang Y , Schenk H . 2018. Challenges in understanding air-seeding in angiosperm xylem. Acta Hortic. 1222: 13–20. DOI: .
Jansen S , McAdam S . 2019. Pits with aspiration explain life expectancy of a conifer species. PNAS 116: 14794–14796. DOI: .
Jansen S , Pletsers A , Sano Y . 2008. The effect of preparation techniques on SEM-imaging of pit membranes. IAWA J. 29: 161–178. DOI: .
Jansen S , Sano Y , Choat B , Rabaey D , Lens F , Dute RR . 2007. Pit membranes in tracheary elements of Rosaceae and related families: new records of tori and pseudotori. Am. J. Bot. 94: 503–514. DOI: .
Jansen S , Schuldt B , Choat B . 2015. Current controversies and challenges in applying plant hydraulic techniques. New Phytol. 205: 961–964. DOI: .
Johnson D , Eckart P , Alsamadisi N , Noble H , Martin C , Spicer R . 2018. Polar auxin transport is implicated in vessel differentiation and spatial patterning during secondary growth in Populus. Am. J. Bot. 105: 186–196. DOI: .
Juniper BE . 1977. Some speculations on the possible roles of the plasmodesmata in the control of differentiation. J. Theoret. Biol. 66: 583–592. DOI: .
Kaushik M , Fraschini C , Chauve G , Putaux J-L , Moores A . 2015. Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed.), The Transmission Electron Microscope - Theory and Applications: 12–163. IntechOpen, London. DOI: .
Kenrick P , Crane PR . 1991. Water-conducting cells in early fossil land plants: Implications for the early evolution of tracheophytes. Bot. Gaz. 152: 335–356. DOI: .
Kenrick P , Crane PR . 1997. The origin and early evolution of plants on land. Nature 389: 33–39. DOI: .
Kerr T , Bailey IW . 1934. The cambium and its derivative tissues: X. Structure, optical properties and chemical composition of the so-called middle lamella. J. Arnold Arbor. 15: 327–349.
Kim JS , Daniel G . 2013. Developmental localization of homogalacturonan and xyloglucan epitopes in pit membranes varies in two poplar species. IAWA J. 34: 245–262. DOI: .
Kim JS , Sandquist D , Sundberg B , Daniel G . 2012. Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta 235: 1315–1330. DOI: .
Kininmonth JA . 1971. Permeability and fine structure of certain hardwoods and effects on drying. I. Transverse permeability of wood to micro-filtered water. Holzforschung 25: 127–133. DOI: .
Kininmonth JA . 1972. Permeability and fine structure of certain hardwoods and effects on drying. II. Differences in fine structure of Nothofagus fusca sapwood and heartwood. Holzforschung 26: 32–38. DOI: .
Kitin P , Funada R . 2016. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. IAWA J. 37: 315–331. DOI: .
Klepsch MM , Schmitt M , Paul Knox J , Jansen S . 2016. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity. AoB Plants 8: plw052. DOI: .
Klepsch MM , Zhang Y , Kotowska MM , Lamarque LJ , Nolf M , Schuldt B , Torres-Ruiz JM , Qin D-W , Choat B , Delzon S , et al..2018. Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy. J. Exp. Bot. 69: 5611–5623.
Kotowska MM , Thom R , Zhang Y , Schenk HJ , Jansen S . 2019. Within-tree variability and sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus. Trees. DOI: .
Kroon-Batenburg LMJ , Kroon JW , Northolt MG . 1986. Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym. Commun. 27: 290–292.
Lee J , Holbrook NM , Zwieniecki MA . 2012. Ion induced changes in the structure of bordered pit membranes. Front. Plant Sci. 3: 55. DOI: .
Lens F , Sperry JS , Christman MA , Choat B , Rabaey D , Jansen S . 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190: 709–723. DOI: .
Li S , Lens F , Espino S , Karimi Z , Klepsch M , Schenk HJ , Schmitt M , Schuldt B , Jansen S . 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA J. 37: 152–171. DOI: .
Liese W. 2007. Electron microscopy of wood: the pioneering years. Mitt Bundesforschungsanst. Forst-Holzwirtschaft Hamburg 223: 3–12.
Liese W , Côté WA . 1960. Electron microscopy of wood: results of the first ten years of research. Proceedings of the Fifth Word Forestry Congress, Seattle, 2: 1288–1298.
Lindström T , Wågberg L , Larsson T . 2005. On the nature of joint strength in paper - A review of dry and wet strength resins in paper manufacturing. Nord Pulp Paper Res. J. 31: 459–468. DOI: .
Martínez-Sanz M , Pettolino F , Flanagan B , Gidley MJ , Gilbert EP . 2017. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr. Polym. 175: 450–463. DOI: .
Meylan BA , Butterfield BG . 1981. Perforation plant differentiation in the vessels of hardwoods. In: Barnett JR (ed.), Xylem Cell Development. Castle House Publications Ltd., Tunbridge Wells.
Meyra AG , Kuz VA , Zarragoicoechea GJ . 2007. Geometrical and physicochemical considerations of the pit membrane in relation to air seeding: the pit membrane as a capillary valve. Tree Physiol. 27: 1401–1405. DOI: .
Muhammad AF , Sattler R . 1982. Vessel structure of Gnetum and the origin of angiosperms. Am. J. Bot. 69: 1004–1021. DOI: .
Murmanis L , Chudnoff M . 1979. Lateral flow in beech and birch as revealed by the electron microscope. Wood Sci. Technol. 13: 79–87. DOI: .
Nardini A , Salleo S , Jansen S . 2011. More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J. Exp. Bot. 62: 4701–4718. DOI: .
Neumann M , Hirsch C , Staněk J , Beneš V , Schmidt V . 2019. Estimation of geodesic tortuosity and constrictivity in stationary random closed sets. Scand. J. Stat. 46: 848–884. DOI: .
Neumann PM , Weissman R , Stefano G , Mancuso S . 2010. Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. J. Exp. Bot. 61: 1711–1717. DOI: .
O’Brien TP . 1970. Further observations on hydrolysis of the cell wall in the xylem. Protoplasma 69: 1–14. DOI: .
O’Brien TP . 1981. The primary xylem. In: Barnett JR (ed.), Xylem Cell Development. Castle House Publications Ltd., Tunbridge Wells.
Oda Y , Fukuda H . 2013. Rho of plant GTPase signaling regulates the behavior of Arabidopsis Kinesin-13A to establish secondary cell wall patterns. Plant Cell 25: 4439–4450. DOI: .
Odstrcil M , Holler M , Raabe J , Sepe A , Sheng X , Vignolini S , Schroer CG , Guizar-Sicairos M . 2019. Ab initio nonrigid X-ray nanotomography. Nat. Commun. 10: 2600. DOI: .
Osorio DA , Seifried B , Moquin P , Grandfield K , Cranston ED . 2018. Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J. Mater. Sci. 53: 9842–9860. DOI: .
Pan R , Tyree MT . 2019. How does water flow from vessel to vessel? Further investigation of the tracheid bridge concept. Tree Physiol. 39: 1019–1031. DOI: .
Park JY , Go T , Ryu J , Lee SJ . 2019. Air spreading through wetted cellulose membranes: implications for the safety function of hydraulic valves in plants. Phys. Rev. E 100: 032409. DOI: .
Pereira L , Flores-Borges DNA , Bittencourt PRL , Mayer JLS , Kiyota E , Araújo P , Jansen S , Freitas RO , Oliveira RS , Mazzafera P . 2018. Infrared nanospectroscopy reveals the chemical nature of pit membranes in water-conducting cells of the plant xylem. Plant Physiol. 177: 1629–1638. DOI: .
Pesacreta TC , Groom LH , Rials TG . 2005. Atomic force microscopy of the intervessel pit membrane in the stem of Sapium sebiferum (Euphorbiaceae). IAWA J. 26: 397–426. DOI: .
Petty JA , Preston RD . 1972. The aspiration of bordered pits in conifer wood. Proc. Royal Soc. Lond. (B) 181: 395–406. DOI: .
Peyrega C , Jeulin D . 2013. Estimation of tortuosity and reconstruction of geodesic paths in 3D. Image Anal. Stereol. 32: 27–43.
Pfautsch S , Aspinwall MJ , Drake JE , Chacon-Doria L , Langelaan RJA , Tissue DT , Tjoelker MG , Lens F . 2018. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Ann. Bot. 121: 129–141.
Pittermann J , Limm E , Rico C , Christman MA . 2011. Structure-function constraints of tracheidbased xylem: a comparison of conifers and ferns. New Phytol. 192: 449–461. DOI: .
Pittermann J , Sperry JS , Hacke UG , Wheeler JK , Sikkema EH . 2005. Torus-margo pits help conifers compete with angiosperms. Science 310: 1924–1924. DOI: .
Plavcová L , Hacke UG . 2011. Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species. New Phytol. 192: 885–897. DOI: .
Plavcová L , Jansen S , Klepsch M , Hacke UG . 2013. Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation? Front. Plant Sci. 4: 453. DOI: .
Rabaey D , Lens F , Huysmans S , Smets E , Jansen S . 2008. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species. Protoplasma 233: 255–262. DOI: .
Reza M , Kontturi E , Jääskeläinen A-S , Vuorinen T , Ruokolainen J . 2015. Transmission electron microscopy for wood and fiber analysis − A review. BioResources 10: 6230-6261−6261. DOI: .
Riemersma JC . 1968. Osmium tetroxide fixation of lipids for electron microscopy. A possible reaction mechanism. Biochim. Biophys. Acta 152: 718–727. DOI: .
Robards AW , Humpherson PG . 1967. Microtubules and angiosperm bordered pit formation. Planta 77: 233–238. DOI: .
Rongpipi S , Ye D , Gomez ED , Gomez EW . 2018. Progress and opportunities in the characterization of cellulose - An important regulator of cell wall growth and mechanics. Front. Plant Sci. 9: 1894. DOI: .
Roth-Nebelsick A. 2019. It’s contagious: calculation and analysis of xylem vulnerability to embolism by a mechanistic approach based on epidemic modeling. Trees 33: 1519–1533. DOI: .
Rudman P. 1966. Studies in wood preservation Pt. II. Movement of aqueous solutions through the pits and cell walls of eucalypt sapwoods. Holzforschung 20: 57–60. DOI: .
Ruel K , Nishiyama Y , Joseleau J-P . 2012. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci. 193–194: 48–61. DOI: .
Sano Y. 2005. Inter-and intraspecific structural variations among intervascular pit membranes, as revealed by field-emission scanning electron microscopy. Am. J. Bot. 92: 1077–1084. DOI: .
Sano Y , Morris H , Shimada H , Ronse De Craene LP , Jansen S . 2011. Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. Ann. Bot. 107: 953–964. DOI: .
Sano Y , Utsumi Y , Nakada R . 2013. Homoplastic occurrence of perforated pit membranes and torus-bearing pit membranes in ancestral angiosperms as observed by field-emission scanning electron microscopy. J. Wood Sci. 59: 95–103. DOI: .
Santiago M , Pagay V , Stroock AD . 2013. Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation. Plant Physiol. 163: 999–1011. DOI: .
Schacht H. 1859. Über die Tüpfel der Gefäss-und Holzzellen. Bot. Zeitung 17: 238–239.
Schenk HJ , Espino S , Rich-Cavazos SM , Jansen S . 2018. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105: 172–185. DOI: .
Schenk HJ , Espino S , Romo DM , Nima N , Do AYT , Michaud JM , Papahadjopoulos-Sternberg B , Yang J , Zuo YY , Steppe K , Jansen S . 2017. Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiol. 173: 1177–1196. DOI: .
Schenk HJ , Michaud JM , Espino S , Melendres T , Roth MR , Welti R , Kaack L , Jansen S . 2019. Lipids in xylem sap of woody plants across the angiosperm phylogeny. bioRxiv: 763771. DOI: .
Schenk HJ , Steppe K , Jansen S . 2015. Nanobubbles: a new paradigm for air-seeding in xylem. Trends Plant Sci. 20: 199–205. DOI: .
Schmid R , Machado RD . 1968. Pit membranes in hardwoods - fine structure and development. Protoplasma 66: 185–204. DOI: .
Schmitz N , Jansen S , Verheyden A , Kairo JG , Beeckman H , Koedam N . 2007. Comparative anatomy of intervessel pits in two mangrove species growing along a natural salinity gradient in Gazi Bay, Kenya. Ann. Bot. 100: 271–281. DOI: .
Scholz A , Rabaey D , Stein A , Cochard H , Smets E , Jansen S . 2013. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiol. 33: 684–694. DOI: .
Schulte PJ , Gibson AC . 1988. Hydraulic conductance and tracheid anatomy in six species of extant seed plants. Can. J. Bot. 66: 1073–1079. DOI: .
Shahmoradian SH , Tsai EHR , Diaz A , Guizar-Sicairos M , Raabe J , Spycher L , Britschgi M , Ruf A , Stahlberg H , Holler M . 2017. Three-dimensional imaging of biological tissue by cryo X-ray ptychography. Sci. Rep. 7: 6291. DOI: .
Shane MW , McCully ME , Canny MJ . 2000. Architecture of branch-root junctions in maize: structure of the connecting xylem and the porosity of pit membranes. Ann. Bot. 85: 613–624. DOI: .
Shi W , Vieitez JR , Berrier AS , Roseveare MW , Surinach DA , Srijanto BR , Collier CP , Boreyko JB . 2019. Self-stabilizing transpiration in synthetic leaves. ACS Appl. Mater. Interfaces 11: 13768–13776. DOI: .
Shou D , Fan J , Ding F . 2011. Hydraulic permeability of fibrous porous media. Int. J. Heat Mass Transf. 54: 4009–4018. DOI: .
Skelton RP , Brodribb TJ , Choat B . 2017. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 214: 561–569.
Smetana O , Mäkilä R , Lyu M , Amiryousefi A , Rodríguez FS , Wu M-F , Solé-Gil A , Gavarrón ML , Siligato R , Miyashima S , et al..2019. High levels of auxin signaling define the stem-cell organizer of the vascular cambium. Nature 565: 485–489. DOI: .
Sperry JS , Hacke UG . 2004. Analysis of circular bordered pit function I. Angiosperm vessels with homogeneous pit membranes. Am. J. Bot. 91: 369–385. DOI: .
Sperry JS , Hacke UG , Wheeler JK . 2005. Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ. 28: 456–465. DOI: .
Sperry JS , Tyree M . 1988. Mechanism of water stress-induced xylem embolism. Plant Physiol. 88: 581–587. DOI: .
Stiller V , Sperry JS . 2002. Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.). J. Exp. Bot. 53: 1155–1161. DOI: .
Šturcová A , Eichhorn SJ , Jarvis MC . 2006. Vibrational spectroscopy of biopolymers under mechanical stress: Processing cellulose spectra using bandshift difference integrals. Biomacromolecules 7: 2688–2691. DOI: .
Sugiyama Y , Nagashima Y , Wakazaki M , Sato M , Toyooka K , Fukuda H , Oda Y . 2019. A Rhoactin signaling pathway shapes cell wall boundaries in Arabidopsis xylem vessels. Nature Communications 10: 468. DOI: .
Sugiyama Y , Wakazaki M , Toyooka K , Fukuda H , Oda Y . 2017. A novel plasma membrane- anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains. Curr. Biol. 27: 2522–2528.e4. DOI: .
Sulbarán B , Toriz G , Allan GG , Pollack GH , Delgado E . 2014. The dynamic development of exclusion zones on cellulosic surfaces. Cellulose 21: 1143–1148. DOI: .
Sun Q , Sun Y , Juzenas K . 2017. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls. J. Exp. Bot. 68: 2231–2244. DOI: .
Thompson WP . 1918. Independent evolution of vessels in Gnetales and angiosperms. Bot. Gaz. 65: 83–90. DOI: .
Tixier A , Herbette S , Jansen S , Capron M , Tordjeman P , Cochard H , Badel E . 2014. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Ann. Bot. 114: 325–334. DOI: .
Torres-Ruiz JM , Cochard H , Choat B , Jansen S , López R , Tomášková I , Padilla-Díaz CM , Badel E , Burlett R , King A , Lenoir N , Martin-St Paul NK , Delzon S . 2017. Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact. New Phytol. 215: 489–499. DOI: .
Tschernitz JL , Sachs IB . 1975. Observations on microfibril organization of Douglas-Fir bordered pit-pair membranes by scanning electron microscopy. Wood Fiber Sci. 6: 332–340.
Tyree MT , Sperry JS . 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 19–36. DOI: .
Uehara K , Hogetsu T . 1993. Arrangement of cortical microtubules during formation of bordered pit in the tracheids of Taxus. Protoplasma 172: 145–153. DOI: .
Vallabh R , Banks-Lee P , Seyam A-F . 2010. New approach for determining tortuosity in fibrous porous media. JEFF 5: 7–15. DOI: .
Vallabh R , Ducoste J , Seyam A-F , Banks-Lee P . 2011. Modeling tortuosity in thin fibrous porous media using computational fluid dynamics. J. Porous Media 14: 791–804. DOI: .
van Doorn WG , Hiemstra T , Fanourakis D . 2011. Hydrogel regulation of xylem water flow: An alternative hypothesis. Plant Physiol. 157: 1642–1649. DOI: .
Wardrop AB . 1958. The organization of the primary wall in differentiating conifer tracheids. Aust. J. Bot. 6: 299–305. DOI: .
Weber F , Koller G , Schennach R , Bernt I , Eckhart R . 2013. The surface charge of regenerated cellulose fibres. Cellulose 20: 2719–2729. DOI: .
Wheeler EA . 1981. Intervascular pitting in Fraxinus americana L. IAWA Bull. n.s. 2: 169–174. DOI: .
Wheeler EA . 1983. Intervascular pit membranes in Ulmus and Celtis native to the United States. IAWA J. 4: 79–88. DOI: .
Wheeler JK , Sperry JS , Hacke UG , Hoang N . 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 28: 800–812. DOI: .
Wheeler TD , Stroock AD . 2008. The transpiration of water at negative pressures in a synthetic tree. Nature 455: 208–212. DOI: .
Williamson VG , Milburn JA . 2017. Xylem vessel length and distribution: does analysis method matter? A study using Acacia. Aust. J. Bot. 65: 292–303. DOI: .
Xu P , Donaldson LA , Gergely ZR , Staehelin LA . 2007. Dual-axis electron tomography: A new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci. Technol. 41: 101–116. DOI: .
Yang KC . 1978. Fine structure of pits in yellow birch (Betula alleghaniensis Britton). IAWA Bull. n. s. 4: 71–77.
Yata S , Itoh T , Kishima T . 1970. Formation of perforation plates and bordered pits in differentiating vessel elements. Wood Res. 50: 1–11.
Zhang H , Zhao C , Li Z , Li J . 2016. The fiber charge measurement depending on the poly-DADMAC accessibility to cellulose fibers. Cellulose 23: 163–173. DOI: .
Zhang Y , Klepsch M , Jansen S . 2017. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. Plant Cell Environ. 40: 2133–2146. DOI: .
Zhang Y , Carmesin C , Kaack L , Klepsch MM , Kotowska M , Matei T , Schenk HJ , Weber M , Walter P , Schmidt V , Jansen S . 2019. High porosity with tiny pore constrictions and unbending pathways characterise the 3D structure of intervessel pit membranes in angiosperm xylem. Plant Cell Environ. DOI: .
Zimmermann MH , Brown CL . 1971. Trees: structure and function. Springer Verlag, New York, Berlin, Heidelberg.
Zimmermann MH . 1983. Xylem structure and the ascent of sap. Springer Verlag, New York.
Zwieniecki MA , Melcher PJ , Michele Holbrook NM . 2001. Hydrogel control of xylem hydrau-lic resistance in plants. Science 291: 1059–1062. DOI: .
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 2872 | 402 | 20 |
Full Text Views | 280 | 22 | 2 |
PDF Views & Downloads | 381 | 42 | 3 |
Pit membranes in bordered pits of tracheary elements of angiosperm xylem represent primary cell walls that undergo structural and chemical modifications, not only during cell death but also during and after their role as safety valves for water transport between conduits. Cellulose microfibrils, which are typically grouped in aggregates with a diameter between 20 to 30 nm, make up their main component. While it is clear that pectins and hemicellulose are removed from immature pit membranes during hydrolysis, recent observations of amphiphilic lipids and proteins associated with pit membranes raise important questions about drought-induced embolism formation and spread via air-seeding from gas-filled conduits. Indeed, mechanisms behind air-seeding remain poorly understood, which is due in part to little attention paid to the three-dimensional structure of pit membranes in earlier studies. Based on perfusion experiments and modelling, pore constrictions in fibrous pit membranes are estimated to be well below 50 nm, and typically smaller than 20 nm. Together with the low dynamic surface tensions of amphiphilic lipids at air-water interfaces in pit membranes, 5 to 20 nm pore constrictions are in line with the observed xylem water potentials values that generally induce spread of embolism. Moreover, pit membranes appear to show ideal porous medium properties for sap flow to promote hydraulic efficiency and safety due to their very high porosity (pore volume fraction), with highly interconnected, non-tortuous pore pathways, and the occurrence of multiple pore constrictions within a single pore. This three-dimensional view of pit membranes as mesoporous media may explain the relationship between pit membrane thickness and embolism resistance, but is largely incompatible with earlier, two-dimensional views on air-seeding. It is hypothesised that pit membranes enable water transport under negative pressure by producing stable, surfactant coated nanobubbles while preventing the entry of large bubbles that would cause embolism.