The liana genus Paullinia L. is one of the most speciose in the neotropics and is unusual in its diversity of stem macromorphologies and cambial conformations. These so-called “vascular cambial variants” are morphologically disparate, evolutionarily labile, and are implicated in injury repair and flexibility. In this study, we explore at the finer scale how wood anatomy translates into functions related to the climbing habit. We present the wood anatomy of Paullinia and discuss the functional implications of key anatomical features. Wood anatomy characters were surveyed for 21 Paullinia species through detailed anatomical study. Paullinia woods have dimorphic vessels, rays of two size classes, and both septate and non-septate fibers. Fibriform vessels, fusiform axial parenchyma, and elements morphologically intermediate between fibers and axial parenchyma were observed. Prismatic crystals are common in the axial and/or ray parenchyma, and laticifers are present in the cortex and/or the early-formed secondary phloem. Some features appear as unique to Paullinia or the Sapindaceae, such as the paucity of axial parenchyma and the abundance of starch storing fibers. Although many features are conserved across the genus, the Paullinia wood anatomy converges on several features of the liana-specific functional anatomy expressed across distantly related lianas, demonstrating an example of convergent evolution. Hence, the conservation of wood anatomy in Paullinia suggests a combination of phylogenetic constraint as a member of Sapindaceae and functional constraint from the liana habit.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Acevedo-Rodríguez P, van Welzen PC, Adema F, van der Ham RWJM. 2011. Sapindaceae. In: Kubitzki K (ed.), The families and genera of vascular plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. Springer, Berlin: 357–407.
Acevedo-Rodríguez P, Wurdack KJ, Ferrucci MS, Johnson G, Dias P, Coelho RG, Somner GV, Steinmann VW, Zimmer EA, Strong MT. 2017. Generic relationships and classification of tribe Paullinieae (Sapindaceae) with a new concept of supertribe Paulliniodae. Syst. Bot. 42: 96–114. DOI: 10.1600/036364417X694926.
Angyalossy V, Angeles G, Pace MR, Lima AC, Dias-Leme CL, Lohmann LG, Madero-Vega C. 2012. An overview of the anatomy, development and evolution of the vascular system of lianas. Plant Ecol. Divers. 5: 167–182. DOI: 10.1080/17550874.2011.615574.
Angyalossy V, Pace MR, Evert RF, Marcati CR, Oskolski AA, Terrazas T, Kotina E, Lens F, Mazzoni SC, Angeles G, Machado SR, Crivellaro A, Rao KS, Junikka L, Nikolaeva N, Baas P. 2016. IAWA list of microscopic bark features. IAWA J. 37: 517–615. DOI: 10.1163/22941932-20160151.
Angyalossy V, Pace MR, Lima AC. 2015. Liana anatomy: a broad perspective on structural evolution of the vascular system. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds.), Ecology of lianas: 251–287. John Wiley & Sons, West Sussex. DOI: 10.1002/9781118392409.ch19.
Araújo GUC, Costa CG. 2007. Anatomia do caule de Serjania corrugata Radlk. (Sapindaceae). Acta Bot. Bras. 21: 489–497. DOI: 10.1590/S0102-33062007000200021.
Baas P, Zweypfenning RCVJ. 1979. Wood antomy of Lythraceae. Acta Bot. Neerl. 28: 117–155. DOI: 10.1111/j.1438-8677.1979.tb00329.x.
Barbosa ACF, Pace MR, Witovisk L, Angyalossy V. 2010. A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA J. 31: 373–383. DOI: 10.3969/j.issn.1673-1719.2014.03.011.
Barbosa ACF, Costa GRO, Angyalossy V, Dos Santos TC, Pace MR. 2018. A simple and inexpensive method for sharpening permanent steel knives with sandpaper. IAWA J. 39: 497–503. DOI: 10.1163/22941932-20170212.
Bastos CL, Tamaio N, Angyalossy V. 2016. Unravelling roots of lianas: a case study in Sapindaceae. Ann. Bot. 118: 733–746. DOI: 10.1093/aob/mcw091.
Bouda M, Windt CW, McElrone AJ, Brodersen CR. 2019. In vivo pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine. Nat. Commun. 10: 5645. DOI: 10.1038/s41467-019-13673-6.
Buerki S, Forest F, Acevedo-Rodríguez P, Callmander MW, Nylander JAA, Harrington M, Sanmartín I, Küpfer P, Alvarez N. 2009. Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Mol. Phylogenet. Evol. 51: 238–258. DOI: 10.1016/j.ympev.2009.01.012.
Bukatsch F. 1972. Bermerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 61: 255.
Burnham R. 2009. An overview of the fossil record of climbers: bejucos, sogas, trepadoras, lianas, cipós, and vines. Rev. Bras. Paleontol. 12: 149–160. DOI: 10.4072/rbp.2009.2.05.
Caballé G. 1993. Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Bot. J. Linn. Soc. 113: 41–60. DOI: 10.1111/j.1095-8339.1993.tb00328.x.
Cabanillas PA, Pace MR, Angyalossy V. 2017. Structure and ontogeny of the fissured stems of Callaeum (Malpighiaceae). IAWA J. 38: 49–66. DOI: 10.1163/22941932-20170156.
Carlquist S. 1985. Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso 11: 139–157.
Carlquist S. 1991. Anatomy of vine and liana stems: a review and synthesis. In: Putz FE, Mooney HA (eds.), The biology of vines: 53–72. Cambridge University Press, Cambridge. DOI: 10.1017/CBO9780511897658.004.
Carlquist S. 2001. Cambial variants (anomalous secondary growth). In: Comparative wood anatomy Springer series in wood science: 271–295. Springer, Berlin. DOI: 10.1016/j.ympev.2019.106577.
Carlquist S. 2007. Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J. Torrey Bot. Soc. 134: 301–332. DOI: 10.3159/1095-5674(2007)134.
Carlquist S. 2013. Interxylary phloem: diversity and functions. Brittonia 65: 477–495. DOI: 10.1007/s12228-012-9298-1.
Carlquist S. 2014. Fiber dimorphism: cell type diversification as an evolutionary strategy in angiosperm woods. Bot. J. Linn. Soc. 174: 44–67. DOI: 10.1111/boj.12107.
Chery JG, Acevedo-Rodríguez P, Rothfels CJ, Specht CD. 2019. Phylogeny of Paullinia L. (Paullinieae: Sapindaceae), a diverse genus of lianas with dynamic fruit evolution. Mol. Phylogenet. Evol. 140: 106577. DOI: 10.1016/J.YMPEV.2019.106577.
Chery JG, Pace MR, Acevedo-Rodríguez P, Specht CD, Rothfels CJ. 2020. Modifications during early plant development promote the evolution of nature’s most complex woods. Curr. Biol. 30: 1–8. DOI: 10.2139/ssrn.3471317.
Cunha Neto IL, Martins FM, Somner GV, Tamaio N. 2017. Secretory structures in stems of five lianas of Paullinieae (Sapindaceae): morphology and histochemistry. Flora 235: 29–40. DOI: 10.1016/j.flora.2017.09.001.
Cunha Neto IL, Martins FM, Somner GV, Tamaio N. 2018. Successive cambia in liana stems of Paullinieae and their evolutionary significance in Sapindaceae. Bot. J. Linn. Soc. 186: 66–88. DOI: 10.1093/botlinnean/box080.
Dobbins DR. 1971. Studies on the anomalous cambial activity in Doxantha unguis-cati (Bignoniaceae). II. A case of differential production of secondary tissues. Am. J. Bot. 58: 697–705. DOI: 10.1002/j.1537-2197.1971.tb10022.x.
Dobbins DR, Fisher JB. 1986. Wound responses in girdled stems of lianas. Bot. Gaz. 147: 278–289. DOI: 10.1086/337595.
Fisher JB, Ewers FW. 1989. Wound healing in stems of lianas after twisting and girdling injuries. Bot. Gaz. 150: 251–265. DOI: 10.1086/337770.
Franklin GL. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155: 3924–3951. DOI: 10.1038/155051a0.
Heimsch C. 1942. Comparative anatomy of the secondary xylem in the “Gruinales” and “Terebinthales” of Wettstein: with reference to taxonomic grouping. Lilloa 8: 83–198.
Horak KE. 1981. Anomalous secondary thickening in Stegnosperma (Phytolaccaceae). Bull. Torrey Bot. Club 108: 189–197. DOI: 10.2307/2484898.
IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA J. 10: 221–332. DOI: 10.1163/22941932-20160151.
Isnard S, Silk WK. 2009. Moving with climbing plants from Charles Darwin’s time into the 21st century. Am. J. Bot. 96: 1205–1221. DOI: 10.3732/ajb.0900045.
Johansen D. 1940. Plant microtechnique. McGraw-Hill, New York.
Klaassen R. 1999. Wood anatomy of the Sapindaceae. IAWA J. suppl 2. International Association of Wood Anatomist, Leiden.
Kraus JE, Arduin M. 1997. Manual básico de métodos em morfologia vegetal. Ed. EDUR, Seropédica, Rio de Janeiro.
Krings M, Kerp H, Taylor TN, Taylor EL. 2006. How Paleozoic vines and lianas got off the ground: on scrambling and climbing Carboniferous–Early Permian Pteridosperms. Bot. Rev. 69: 204–224. DOI: 10.1663/0006-8101(2003)069[0204:hpvalg]2.0.co;2.
Leal MOL, Nascimento LB, Coutinho AJ, Tamaio N, Brandes AFN. 2020. Development of external vascular cylinders (neoformations) in stems and roots of Chiococca alba (L.) Hitchc. (Rubiaceae). Flora 264: 151569. DOI: 10.1016/j.flora.2020.151569.
Metcalfe CR, Chalk L. 1950. Anatomy of the dicotyledons. Clarendon Press, Oxford.
Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng J, Ziemińska K, Jansen S. 2016. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol. 209: 1553–1565. DOI: 10.1111/nph.13737.
Obaton M. 1960. Les lianes ligneuses a structure anormale des forêts denses d’Afrique occidentale. Ann. Sci. Nat, Bot. Ser 12: 1–220.
Pace MR, Lohmann LG, Angyalossy V. 2009. The rise and evolution of the cambial variant in Bignonieae (Bignoniaceae). Evol. Dev. 11: 465–479. DOI: 10.1111/j.1525-142X.2009.00355.x.
Pace MR, Lohmann LG, Olmstead RG, Angyalossy V. 2015. Wood anatomy of major Bignoniaceae clades. Plant Syst. Evol. 301: 967–995. DOI: 10.1007/s00606-014-1129-2.
Pace MR, Acevedo-Rodríguez P, Amorim A, Angyalossy V. 2018a. Ontogeny, structure and occurrence of interxylary cambia in Malpighiaceae. Flora 241: 46–60. DOI: 10.1016/j.flora.2018.02.004.
Pace MR, Angyalossy V, Acevedo-Rodríguez P, Wen J. 2018b. Structure and ontogeny of successive cambia in Tetrastigma (Vitaceae), the host plants of Rafflesiaceae. J. Syst. Evol. 56: 396–400. DOI: 10.1111/jse.12303.
Patil VS, Marcati CR, Rajput KS. 2011. Development of intra- and interxylary secondary phloem in Coccinia Indica (Cucurbitaceae). IAWA J. 32: 475–491. DOI: 10.1163/22941932-90000072.
Pellissari LCO, Barros CF, Medeiros H, Tamaio N. 2018. Cambial patterns of Paullinia (Sapindaceae) in southwestern Amazonia, Brazil. Flora 246: 71–82. DOI: 10.1016/j.flora.2018.07.002.
Pfeiffer H. 1926. Das Abnorme Dickenwachstum – Handbuch der Pflanzenanatomie, Band IX. Gebrüder Borntraaeger, Berlin.
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Radlkofer L. 1895. Monographie der Sapindaceen-Gattung Paullinia. K. B. Akademie, Munich. DOI: 10.5962/bhl.title.65993.
Rajput KS, Rao KS. 2003. Cambial variant and xylem structure in the stem of Cocculus hirsutus (Menispermaceae). IAWA J. 24: 411–420. DOI: 10.1163/22941932-90000345.
Rajput KS, Marcati CR. 2013. Stem anatomy and development of successive cambia in Hebanthe eriantha (Poir.) Pedersen: a neotropical climbing species of the Amaranthaceae. Plant Syst. Evo. 299: 1449–1459. DOI: 10.1007/s00606-013-0807-9.
Rowe N, Speck T. 2004. Plant growth forms: an ecological and evolutionary perspective. New Phytol. 166: 61–72. DOI: 10.1111/j.1469-8137.2004.01309.x.
Rowe N, Isnard S, Gallenmüller F, Speck T. 2006. Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel A, Rowe NP, Speck T (eds.), Biomechanics and ecology. Dekker: 36–59.
Rupp P. 1964. Polyglykol als Einbettungsmedium zum Schneiden botanischer Präparate. Mikrokosmos 53: 123–128.
Sauter JJ, Iten W, Zimmermann MH. 1973. Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can. J. Bot. 51: 1–8. DOI: 10.1139/b73-001.
Schenk H. 1893. Beiträge zur Biologie und Anatomie der Lianen im besonderen der in Brasilien einheimischen Arten. In: Schimper AFM (ed.), Botanische Mittheilungen Aus Den Tropen: 1–71. Gustav Fisher, Jena.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671–675. DOI: 10.1038/nmeth.2089.
Tamaio N. 2006. Anatomia do caule e da raiz em Menispermaceae. PhD thesis, Universidade de São Paulo, São Paulo, Brasil.
Tamaio N. 2011. Wood anatomy of lianas of Sapindaceae commercially used in São Paulo — SP. Cerne 17: 533–540.
Tamaio N, Angyalossy V. 2009. Variação cambial em Serjania caracasana (Sapindaceae): enfoque na adequação terminológica. Rodriguésia 60: 651–666. DOI: 10.1590/2175-7860200960311.
Tamaio N, Brandes AFN. 2010. Xylem structure of successive rings in the stem of Abuta grandifolia (Menispermaceae) a statistical approach. IAWA J. 31: 309–316. DOI: 10.1163/22941932-90000025.
Tamaio N, Neves MF, Brandes AFN, Vieira RC. 2011. Quantitative analyses establish the central vascular cylinder as the standard for wood-anatomy studies in lianas having compound stems (Paullinieae: Sapindaceae). Flora 206: 987–996. DOI: 10.1016/j.flora.2011.07.006.
Tamaio N, Somner GV. 2010. Development of corded vascular cylinder in Thinouia restingae Ferruci & Somner (Sapindaceae: Paullinieae). J. Torrey Bot. Soc. 137: 319–326. DOI: 10.3159/10-RA-047.1.
Ter Welle BJH, Koek-Noorman J. 1978. On fibers, parenchyma and intermediate forms in the genusMiconia (Melastomataceae). Acta Bot. Neerl. 27: 1–9. DOI: 10.1111/j.1438-8677.1978.tb01142.x.
Van der Walt JJA, Van der Schijff HP, Schweickerdt HG. 1973. Anomalous secondary growth in the stem of lianas Mikania cordata (Burm F.) Robins (Compositae) and Paullinia pinnata Linn. (Sapindaceae). Kirkia 9: 106–138.
Wagner ST, Isnard S, Rowe NP, Samain MS, Neinhuis C, Wanke S. 2012. Escaping the lianoid habit: Evolution of shrub-like growth forms in Aristolochia subgenus Isotrema (Aristolochiaceae). Am. J. Bot. 99: 1609–1629. DOI: 10.3732/ajb.1200244.
Zumaya-Mendoza S, Terrazas T. 2016. Vessel element and fiber length variation in successive cambia of Iresine latifolia (Amaranthaceae). Rev. Mex. Biodiv. 87: 1315–1320. DOI: 10.1016/j.rmb.2016.10.006.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1670 | 215 | 16 |
Full Text Views | 146 | 41 | 0 |
PDF Views & Downloads | 147 | 28 | 0 |
The liana genus Paullinia L. is one of the most speciose in the neotropics and is unusual in its diversity of stem macromorphologies and cambial conformations. These so-called “vascular cambial variants” are morphologically disparate, evolutionarily labile, and are implicated in injury repair and flexibility. In this study, we explore at the finer scale how wood anatomy translates into functions related to the climbing habit. We present the wood anatomy of Paullinia and discuss the functional implications of key anatomical features. Wood anatomy characters were surveyed for 21 Paullinia species through detailed anatomical study. Paullinia woods have dimorphic vessels, rays of two size classes, and both septate and non-septate fibers. Fibriform vessels, fusiform axial parenchyma, and elements morphologically intermediate between fibers and axial parenchyma were observed. Prismatic crystals are common in the axial and/or ray parenchyma, and laticifers are present in the cortex and/or the early-formed secondary phloem. Some features appear as unique to Paullinia or the Sapindaceae, such as the paucity of axial parenchyma and the abundance of starch storing fibers. Although many features are conserved across the genus, the Paullinia wood anatomy converges on several features of the liana-specific functional anatomy expressed across distantly related lianas, demonstrating an example of convergent evolution. Hence, the conservation of wood anatomy in Paullinia suggests a combination of phylogenetic constraint as a member of Sapindaceae and functional constraint from the liana habit.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1670 | 215 | 16 |
Full Text Views | 146 | 41 | 0 |
PDF Views & Downloads | 147 | 28 | 0 |