Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
The products of secondary xylem are of significant biological and commercial importance, and as a result, the biology of secondary growth and how intrinsic and extrinsic factors influence this process have been the subject of intense investigation. Studies into secondary xylem range in scale from the cellular to the forest stand level, with phenotypic analyses often involving the assessment of traits relating to cell morphology and cell wall chemical composition. While numerous techniques are currently available for phenotypic analyses of samples containing abundant amounts of secondary tissue, only a few of them (microanalytical techniques) are suitable when working with limiting amounts of secondary tissue or where a fine-scale resolution of morphological features or cell wall chemical composition is required. While polarised light microscopy, scanning electron microscopy, field emission-scanning electron microscopy and X-ray scattering and micro-tomography techniques serve as the most frequently used microanalytical techniques in morphotyping, techniques such as scanning ultraviolet microspectrophotometry, X-ray photoelectron spectroscopy, gas chromatography, Fourier-transform infrared spectroscopy and matrix-assisted laser desorption ionisation mass spectrometry serve as the most commonly used microanalytical techniques in chemotyping. Light microscopy, fluorescence microscopy, confocal laser scanning microscopy, transmission electron microscopy and Raman spectroscopy serve as dual micro morphotyping and chemotyping techniques. In this review, we summarise and discuss these techniques in the light of their applicability as microanalytical techniques to study secondary xylem.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agarwal UP. 2006. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta. 224: 1141–1153. DOI: 10.1007/s00425-006-0295-z.
Al-Haddad JM, Kang KY, Mansfield SD, Telewski FW. 2013. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula × Populus alba). Tree Physiol. 33: 365–373. DOI: 10.1093/treephys/tpt017.
Alonso-Simón A, García-Angulo P, Mélida H, Encina A, Álvarez JM, Acebes JL. 2011. The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signal Behav. 6: 1104–1110. DOI: 10.4161/psb.6.8.15793.
Altaner C, Hapca AI, Knox JP, Jarvis MC. 2007. Detection of β-1-4-galactan in compression wood of Sitka spruce Picea sitchensis (Bong.) Carriere by immunofluorescence. Holzforschung. 61: 311–316. DOI: 10.1515/hf.2007.049.
Altaner CM, Tokareva EN, Jarvis MC, Harris PJ. 2010. Distribution of (1→4)-β-galactans, arabinogalactan proteins, xylans and (1→3)-β-glucans in tracheid cell walls of softwoods. Tree Physiol. 30: 782–793. DOI: 10.1093/treephys/tpq021.
Altartouri B, Bidhendi AJ, Tani T, Suzuki J, Conrad C, Chebli Y, Liu N, Karunakaran C, Scarcelli G, Geitmann A. 2019. Pectin chemistry and cellulose crystallinity govern pavement cell morphogenesis in a multi-step mechanism. Plant Physiol. 181: 127–141. DOI: 10.1104/pp.19.00303.
Anderson CT, Carroll A, Akhmetova L, Somerville C. 2010. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol. 152: 787–796. DOI: 10.1104/pp.109.150128.
Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B. 2006. Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J. 45: 144–165. DOI: 10.1111/j.1365-313X.2005.02584.x.
Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E. 2000. Microfibril angle of Norway spruce Picea abies (L.) Karst. compression wood: comparison of measuring techniques. J. Wood Sci. 46: 343–349. DOI: 10.1007/BF00776394.
Angeles G, Berrio-Sierra J, Joseleau JP, Lorimier P, Lefebvre A, Ruel K. 2006. Preparative laser capture microdissection and single-pot cell wall material preparation: a novel method for tissue-specific analysis. Planta. 224: 228–232. DOI: 10.1007/s00425-006-0285-1.
Araujo P, Ferreira MS, de Oliyeira DN, Pereira L, Sawaya A, Catharino RR, Mazzafera P. 2014. Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in Eucalyptus. Anal. Chem. 86: 3415–3419. DOI: 10.1021/ac500220r.
Arend M. 2008. Immunolocalization of (1,4)-β-galactan in tension wood fibers of poplar. Tree Physiol. 28: 1263–1267. DOI: 10.1093/treephys/28.8.1263.
Ariel P. 2017. A beginner’s guide to tissue clearing. Int. J. Biochem. Cell Biol. 84: 35–39. DOI: 10.1016/j.bioce1.2016.12.009.
Bañuls-Ciscar J, Pratelli D, Abel ML, Watts JF. 2016. Surface characterisation of pine wood by XPS. Surf. Interface Anal. 48: 589–592. DOI: 10.1002/sia.5960.
Bao CC, Wang J, Zhang RH, Zhang BC, Zhang H, Zhou YH, Huang SJ. 2012. Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J. 71: 962–975. DOI: 10.1111/j.1365-313X.2012.05044.x.
Bauer S. 2012. Mass spectrometry for characterizing plant cell wall polysaccharides. Front. Plant Sci. 3: 1–6. DOI: 10.3389/fpls.2012.00045.
Begum S, Nakaba S, Yamagishi Y, Yamane K, Islam A, Oribe Y, Ko JH, Jin HO, Funada R. 2012. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems. Ann. Bot. 110: 875–885. DOI: 10.1093/aob/mcs149.
Belt T, Keplinger T, Hanninen T, Rautkari L. 2017. Cellular level distributions of Scots pine heartwood and knot heartwood extractives revealed by Raman spectroscopy imaging. Ind. Crops Prod. 108: 327–335. DOI: 10.1016/j.indcrop.2017.06.056.
Biermann CJ, McGinnis GD. 1989. Analysis of carbohydrates by GLC and MS. CRC press, Boca Raton, FL, USA.
Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP. 2006. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281: 29321–29329. DOI: 10.1074/jbc.M605903200.
Bond J, Donaldson L, Hill S, Hitchcock K. 2008. Safranine fluorescent staining of wood cell walls. Biotech. Histochem. 83: 161–171. DOI: 10.1080/10520290802373354.
Borgin K, Parameswaran N, Liese W. 1975. The effect of aging on the ultrastructure of wood. Wood Sci. Technol. 9: 87–98. DOI: 10.1007/bf00353388.
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. 2016. Mass spectrometry imaging for plant biology: a review. Phytochem. Rev. 15: 445–488. DOI: 10.1007/s11101-015-9440-2.
Brodersen CR. 2013. Visualizing wood anatomy in three dimensions with high-resolution x-ray micro-tomography (μCT) — a review. IAWA J. 34: 408–424. DOI: 10.1163/22941932-00000033.
Brundrett MC, Enstone DE, Peterson CA. 1988. A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma. 146: 133–142. DOI: 10.1007/BF01405922.
Brundrett MC, Kendrick B, Peterson CA. 1991. Efficient lipid staining in plant material with Sudan red 7B or fluoral yellow 088 in polyethylene glycol-glycerol. Biotech. Histochem. 66: 111–116. DOI: 10.3109/10520299109110562.
Carrillo A, Mayer I, Koch G, Hapla F. 2008. Wood anatomical characteristics and chemical composition of Prosopis laevigata grown in the northeast of Mexico. IAWA J. 29: 25–34. DOI: 10.1163/22941932-90000167.
Chaffey N, Cholewa E, Regan S, Sundberg B. 2002. Secondary xylem development in Arabidopsis: a model for wood formation. Physiol. Plant. 114: 594–600. DOI: 10.1034/j.1399-3054.2002.1140413.x.
Chai GH, Kong YZ, Zhu M, Yu L, Qi G, Tang XF, Wang ZG, Cao YP, Yu CJ, Zhou GK. 2015. Arabidopsis C3H14 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther development. J. Exp. Bot. 66: 2595–2609. DOI: 10.1093/jxb/erv060.
Chu LQ, Masyuko R, Sweedler JV, Bohn PW. 2010. Base-induced delignification of Miscanthus × giganteus studied by three-dimensional confocal Raman imaging. Bioresource Technol. 101: 4919–4925. DOI: 10.1016/j.biortech.2009.10.096.
Clausen MH, Willats WGT, Knox JP. 2003. Synthetic methyl hexagalacturonate hapten inhibitors of antihomogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr. Res. 338: 1797–1800. DOI: 10.1016/s0008-6215(03)00272-6.
Czaja AD, Kudryavtsev AB, Schopf JW. 2006. New method for the microscopic, nondestructive acquisition of ultraviolet resonance Raman spectra from plant cell walls. Appl. Spectrosc. 60: 352–355. DOI: 10.1366/000370206776593753.
Dai Y, Hu G, Dupas A, Medina L, Blandels N, et al.2020. Implementing the CRISPR/Cas9 technology in Eucalyptus hairy roots using wood-related genes. Int. J. Mol. Sci. 21: 3408. DOI: 10.3390/ijms21103408.
Dejardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé JC. 2010. Wood formation in angiosperms. C.R. Biol. 333: 325–334. DOI: 10.1016/j.crvi.2010.01.010.
Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, et al.2015. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. New Phytol. 205: 666–681. DOI: 10.1111/nph.13099.
Dickson A, Nanayakkara B, Sellier D, Meason D, Donaldson L, Brownlie R. 2017. Fluorescence imaging of cambial zones to study wood formation in Pinus radiata D. Don. Trees. 31: 479–490. DOI: 10.1007/s00468-016-1469-3.
Dogu AD, Grabner M. 2010. A staining method for determining severity of tension wood. Turk J Agric For. 34: 381–392. DOI: 10.3906/tar-0906-209.
Donaldson L, Bardage S, Daniel G. 2007. Three-dimensional imaging of a sawn surface: a comparison of confocal microscopy, scanning electron microscopy, and light microscopy combined with serial sectioning. Wood Sci. Technol. 41: 551–564. DOI: 10.1007/s00226-007-0132-y.
Donaldson L, Xu P. 2005. Microfibril orientation across the secondary cell wall of Radiata pine tracheids. Trees. 19: 644–653. DOI: 10.1007/s00468-005-0428-1.
Donaldson L, Radotić K, Kalauzi A, Djikanović D, Jeremić M. 2010. Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. J. Struct. Biol. 169: 106–115. DOI: 10.1016/j.jsb.2009.09.006.
Donaldson LA, Knox JP. 2012. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation. Plant Physiol. 158: 642–653. DOI: 10.1104/pp.111.184036.
Donaldson LA, Nanayakkara B, Radotić K, Djikanović-Golubović D, Mitrović A, Pristov JB, Radosavljević JS, Kalauzi A. 2015. Xylem parenchyma cell walls lack a gravitropic response in conifer compression wood. Planta. 242: 1413–1424. DOI: 10.1007/s00425-015-2381-6.
Donaldson LA, Singh AP. 2016. Reaction wood. In: Kim YS, Funada R, Singh AP (eds.), Secondary xylem biology: 93–110. Academic Press, Boston, USA.
Donaldson LA. 2019. Wood cell wall ultrastructure: the key to understanding wood properties and behaviour. IAWA J. 40: 645–672. DOI: 10.1163/22941932-40190258.
Donaldson LA, Singh AP, Yoshinaga A, Takabe K. 1999. Lignin distribution in mild compression wood of Pinus radiata. Can. J. Bot. 77: 41–50. DOI: 10.1139/b98-190.
Duchesne I, Daniel G. 1999. The ultrastructure of wood fibre surfaces as shown by a variety of microscopical methods — A review. Nord Pulp Pap. Res. J. 14: 129–139. DOI: 10.3183/npprj-1999-14-02-p129-139.
Eckert C, Sharmin S, Kogel A, Yu D, Kins L, Strijkstra GJ, Polle A. 2019. What makes the wood? Exploring the molecular mechanisms of xylem acclimation in hardwoods to an ever-changing environment. Forests. 10: 358. DOI: 10.3390/f10040358.
Ehmcke G, Pilgard A, Koch G, Richter K. 2017. Topochemical analyses of furfuryl alcohol modified radiata pine (Pinus radiata) by UMSP, light microscopy and SEM. Holzforschung. 71: 821–831. DOI: 10.1515/hf-2016-0219.
Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, et al.2012. Biological imaging software tools. Nat. Methods. 9: 697–710. DOI: 10.1038/nmeth.2084.
Ercius P, Alaidi O, Rames MJ, Ren G. 2015. Electron tomography: a three-dimensional analytic tool for hard and soft materials research. Adv. Mater. 27: 5638–5663. DOI: 10.1002/adma.201501015.
Evans R. 1994. Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung. 48: 168–172. DOI: 10.1515/hfsg.1994.48.2.168.
Evans R, Ilic J. 2001. Rapid prediction of wood stiffness from microfibril, angle and density. For. Prod. J. 51: 53–57.
Evans R, Stringer S, Kibblewhite RP. 2000. Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J. 53: 450–457.
Feenstra AD, Duenas ME, Lee YJ. 2017. Five-micron high resolution MALDI mass spectrometry imaging with simple, interchangeable, multi-resolution optical system. J. Am. Soc. Mass Spectrom. 28: 434–442. DOI: 10.1007/s13361-016-1577-8.
Felten J, Vahala J, Love J, Gorzsás A, Ruggeberg M, et al.2018. Ethylene signalling induces gelatinous layers with typical features of tension wood in hybrid aspen. New Phytol. 218: 999–1014. DOI: 10.1111/nph.15078.
Filonova L, Kallas AM, Greffe L, Johansson G, Teeri TT, Daniel G. 2007. Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan. Biomacromolecules. 8: 91–97. DOI: 10.1021/bm060632z.
Foston M, Hubbell CA, Samuel R, Jung S, Fan H, et al.2011. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula × alba as a model substrate for reduced recalcitrance. Energy Environ. Sci. 4: 4962–4971. DOI: 10.1039/c1ee02073k.
Fukazawa K. 1992. Ultraviolet microscopy. In: Lin SY, Dence CW (eds.), Methods in lignin chemistry: 110–121. Springer-Verlag, Berlin, Heidelberg.
Gerber L, Eliasson M, Trygg J, Moritz T, Sundberg B. 2012. Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis. 95: 95–100. DOI: 10.1016/j.jaap.2012.01.011.
Gerber L, Ohman D, Kumar M, Ranocha P, Goffner D, Sundberg B. 2016. High-throughput microanalysis of large lignocellulosic sample sets by pyrolysis-gas chromatography/mass spectrometry. Physiol. Plant. 156: 127–138. DOI: 10.1111/ppl.12397.
Gerber L, Zhang B, Roach M, Rende U, Gorzsás A, Kumar M, Burgert I, Niittyla T, Sundberg B. 2014. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis but causes an overall decrease in cell wall polymers. New Phytol. 203: 1220–1230. DOI: 10.1111/nph.12888.
Gierlinger N, Keplinger T, Harrington M. 2012. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 7: 1694–1708. DOI: 10.1038/nprot.2012.092.
Gierlinger N, Luss S, Konig C, Konnerth J, Eder M, Fratzl P. 2010. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J. Exp. Bot. 61: 587–595. DOI: 10.1093/jxb/erp325.
Gierlinger N, Schwanninger M. 2006. Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol. 140: 1246–1254. DOI: 10.1104/pp.105.066993.
Gierlinger N, Schwanninger M. 2007. The potential of Raman microscopy and Raman imaging in plant research. Spectroscopy. 21: 69–89. DOI: 10.1155/2007/498206.
Gierlinger N, Schwanninger M, Hinterstoisser B, Wimmer R. 2002. Rapid determination of heartwood extractives in Larix sp by means of Fourier transform near infrared spectroscopy. J. Near Infrared Spectrosc. 10: 203–214. DOI: 10.1255/jnirs.336.
Gorzsás A, Stenlund H, Persson P, Trygg J, Sundberg B. 2011. Cell-specific chemotyping and multivariate imaging by combined FT-IR microspectroscopy and orthogonal projections to latent structures (OPLS) analysis reveals the chemical landscape of secondary xylem. Plant J. 66: 903–914. DOI: 10.1111/j.1365-313X.2011.04542.x.
Gou JY, Park S, Yu XH, Miller LM, Liu CJ. 2008. Compositional characterization and imaging of “wall-bound” acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods. Planta. 229: 15–24. DOI: 10.1007/s00425-008-0799-9.
Gray JD, Kolesik P, Hoj PB, Coombe BG. 1999. Confocal measurement of the three-dimensional size and shape of plant parenchyma cells in a developing fruit tissue. Plant J. 19: 229–236. DOI: 10.1046/j.1365-313X.1999.00512.x.
Gritsch C, Wan YF, Mitchell RAC, Shewry PR, Hanley SJ, Karp A. 2015. G-fibre cell wall development in willow stems during tension wood induction. J. Exp. Bot. 66: 6447–6459. DOI: 10.1093/jxb/erv358.
Groover A. 2016. Gravitropisms and reaction woods of forest trees–evolution, functions and mechanisms. New Phytol. 211: 790–802. DOI: 10.1111/nph.13968.
Groover A, Robischon M. 2006. Developmental mechanisms regulating secondary growth in woody plants. Curr. Opin. Plant Biol. 9: 55–58. DOI: 10.1016/j.pbi.2005.11.013.
Hepler PK, Newcomb EH. 1963. Fine structure of young tracheary xylem elements arising by redifferentiation of parenchyma in wounded coleus stem. J. Exp. Bot. 14: 496–503. DOI: 10.1093/jxb/14.3.496.
Heu R, Shahbazmohamadi S, Yorston J, Capeder P. 2019. Target material selection for sputter coating of SEM samples. Microscopy Today. 27: 32–36. DOI: 10.1017/S1551929519000610.
Hilden L, Daniel G, Johansson G. 2003. Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure. Biotechnol. Lett. 25: 553–558. DOI: 10.1023/a:1022846304826.
Hubbe MA, Chandra RP, Dogu D, van Velzen STJ. 2019. Analytical staining of cellulosic materials: a review. Bioresources. 14: 7387–7464.
Inari GN, Petrissans M, Lambert J, Ehrhardt JJ, Gerardin P. 2006. XPS characterization of wood chemical composition after heat-treatment. Surf. Interface Anal. 38: 1336–1342. DOI: 10.1002/sia.2455.
Irbe I, Noldt G, Koch G, Andersone I, Andersons B. 2006. Application of scanning UV microspectrophotometry for the topochemical detection of lignin within individual cell walls of brown-rotted Scots pine (Pinus sylvestris L.) sapwood. Holzforschung. 60: 601–607. DOI: 10.1515/hf2006.102.
Jacquin P, Longuetaud F, Leban JM, Mothe F. 2017. X-ray microdensitometry of wood: a review of existing principles and devices. Dendrochronologia. 42: 42–50. DOI: 10.1016/j.dendro.2017.01.004.
Kanbayashi T, Miyafuji H. 2016. Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica). Sci. Rep. 6: 30147. DOI: 10.1038/srep30147.
Kidner C, Groover A, Thomas DC, Emelianova K, Soliz-Gamboa C, Lens F. 2016. First steps in studying the origins of secondary woodiness in Begonia (Begoniaceae): combining anatomy, phylogenetics, and stem transcriptomics. Biol. J. Linn. Soc. 117: 121–138. DOI: 10.1111/bij.12492.
Kim JS, Daniel G. 2014. Immunocytochemical studies of axial resin canals. I. Localization of non-cellulosic polysaccharides in epithelium of Norway spruce xylem. IAWA J. 35: 236–252. DOI: 10.1163/22941932-00000063.
Kim JS, Daniel G. 2017. Immunolocalization of pectin and hemicellulose epitopes in the phloem of Norway spruce and Scots pine. Trees. 31: 1335–1353. DOI: 10.1007/s00468-017-1552-4.
Kitin P, Funada R, Sano Y, Ohtani J. 2000. Analysis by confocal microscopy of the structure of cambium in the hardwood Kalopanax pictus. Ann. Bot. 86: 1109–1117. DOI: 10.1006/anbo.2000.1281.
Kitin P, Sano Y, Funada R. 2002. Fusiform cells in the cambium of Kalopanax pictus are exclusively mononucleate. J. Exp. Bot. 53: 483–488. DOI: 10.1093/jexbot/53.368.483.
Kitin P, Sano Y, Funada R. 2003. Three-dimensional imaging and analysis of differentiating secondary xylem by confocal microscopy. IAWA J. 24: 211–222. DOI: 10.1163/22941932-90001590.
Knebel W, Schnepf E. 1991. Confocal laser scanning microscopy of fluorescently stained wood cells — a new method for 3-dimensional imaging of xylem elements. Trees. 5: 1–4. DOI: 10.1007/BF00225328.
Knox JP. 1997. The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int. Rev. Cytol. 171: 79–120.
Knox JP. 2008. Revealing the structural and functional diversity of plant cell walls. Curr. Opin. Plant Biol. 11: 308–313. DOI: 10.1016/j.pbi.2008.03.001.
Koch G, Grunwald C. 2004. Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U (ed.), Wood fibre cell walls: methods to study their formation, structure and properties: 119–130. Swedish University of Agricultural Sciences, Uppsala, Sweden.
Koch G, Kleist G. 2001. Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55: 563–567. DOI: 10.1515/hf.2001.091.
Koehler L, Telewski FW. 2006. Biomechanics and transgenic wood. Am. J. Bot. 93: 1433–1438. DOI: 10.3732/ajb.93.10.1433.
Kong LZ, Guan H, Wang XQ. 2018. In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy. ACS Sustain. Chem. Eng. 6: 3349–3357. DOI: 10.1021/acssuschemeng.7b03518.
Kraus JE, de Sousa HC, Rezende MH, Castro NM, Vecchi C, Luque R. 1998. Astra blue and basic fuchsin double staining of plant materials. Biotech. Histochem. 73: 235–243. DOI: 10.3109/10520299809141117.
Lafarguette F, Leplé JC, Déjardin A, Laurans F, Costa G, Lesage-Descauses MC, Pilate G. 2004. Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol. 164: 107–121. DOI: 10.1111/j.1469-8137.2004.01175.x.
Lasch P, Naumann D. 2006. Spatial resolution in infrared micro spectroscopic imaging of tissues. Biochim. Biophys. Acta. 1758: 814–829. DOI: 10.1016/j.bbamem.2006.06.008.
Lehringer C, Daniel G, Schmitt U. 2009. TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Sci. Technol. 43: 691–702. DOI: 10.1007/s00226-009-0260-7.
Li B, Bhandari DR, Rompp A, Spengler B. 2016. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora. Sci. Rep. 6: 36074. DOI: 10.1038/srep36074.
Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, et al.2014. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development. 141: 4311–4319. DOI: 10.1242/dev.111369.
Lima JT, Ribeiro AD, Narciso CRP. 2014. Microfibril angle of Eucalyptus grandis wood in relation to the cambial age. Maderas-Cienc. Tecnol. 16: 487–494. DOI: 10.4067/s0718-221x2014005000039.
Liu CW, Su ML, Zhou XW, Zhao RJ, Lu JX, Wang YR. 2017. Analysis of content and distribution of lignin in cell wall of transgenic poplar with Fourier Infrared Spectrum (FTIR) and Confocal Laser Scanning Microscopy (CLSM). Spectrosc. Spect. Anal. 37: 3404–3408. DOI: 10.3964/j.issn.1000-0593(2017)11-3404-05.
Liu LF, Shang-Guan KK, Zhang BC, Liu XL, Yan MX, et al.2013. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet. 9: e1003704. DOI: 10.1371/journal.pgen.1003704.
Liu Q, Guo Z, He L. 2007. Mass spectrometry imaging of small molecules using desorption/ionization on silicon. Anal. Chem. 79: 3535–3541. DOI: 10.1021/ac0611465.
Loqman MY, Bush PG, Farquharson C, Hall AC. 2010. A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology. Eur. Cells Mater. 19: 214–227. DOI: 10.22203/eCM.v019a21.
Lourenço A, Gominho J, Marques AV, Pereira H. 2013. Comparison of Py-GC/FID and wet chemistry analysis for lignin determination in wood and pulps from Eucalyptus globulus. Bioresources. 8: 2967–2980.
Lourenço A, Rencoret J, Chemetova C, Gominho J, Gutiérrez A, del Río JC, Pereira H. 2016. Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L. Front. Plant Sci. 7: 1612. DOI: 10.3389/fpls.2016.01612.
Lunsford KA, Peter GF, Yost RA. 2011. Direct matrix-assisted laser desorption/ionization mass spectrometric imaging of cellulose and hemicellulose in Populus tissue. Anal. Chem. 83: 6722–6730. DOI: 10.1021/ac2013527.
Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ. 2015. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sust. Energ. Rev. 49: 871–906. DOI: 10.1016/j.rser.2015.04.091.
Lux A, Morita S, Abe J, Ito K. 2005. An improved method for clearing and staining free-hand sections and whole-mount samples. Ann. Bot. 96: 989–996. DOI: 10.1093/aob/mci266.
Ma JF, Ji Z, Zhou X, Zhang ZH, Xu F. 2013a. Transmission electron microscopy, fluorescence microscopy, and confocal Raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall. Microsc. Microanal. 19: 243–253. DOI: 10.1017/s1431927612013906.
Ma JF, Zhou X, Zhang X, Xu F. 2013b. Label-free in situ Raman analysis of opposite and tension wood in Populus nigra. Bioresources. 8: 2222–2233.
MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG. 2010. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J. 62: 689–703. DOI: 10.1111/j.1365-313X.2010.04181.x.
MacMillan CP, Taylor L, Bi YD, Southerton SG, Evans R, Spokevicius A. 2015. The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol. 206: 1314–1327. DOI: 10.1111/nph.13320.
Mahesh S, Kumar P, Ansari SA. 2015. A rapid and economical method for the maceration of wood fibers in Boswellia serrata Roxb. Tropical Plant Research 2: 108–111.
Maloney VJ, Mansfield SD. 2010. Characterization and varied expression of a membrane-bound endo-β-1,4-glucanase in hybrid poplar. Plant Biotechnol. J. 8: 294–307. DOI: 10.1111/j.1467-7652.2009.00483.x.
Manabe Y, Verhertbruggen Y, Gille S, Harholt J, Chong SL, et al.2013. Reduced wall acetylation proteins play vital and distinct roles in cell wall O-acetylation in Arabidopsis. Plant Physiol. 163: 1107–1117. DOI: 10.1104/pp.113.225193.
Mayo SC, Chen F, Evans R. 2010. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. J. Struct. Biol. 171: 182–188. DOI: 10.1016/j.jsb.2010.04.001.
McCann MC, Hammouri M, Wilson R, Belton P, Roberts K. 1992. Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol. 100: 1940–1947. DOI: 10.1104/pp.100.4.1940.
McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP. 2004. Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal. Biochem. 326: 49–54. DOI: 10.1016/j.ab.2003.11.011.
Meikle PJ, Bonig I, Hoogenraad NJ, Clarke AE, Stone BA. 1991. The location of (1- 3)-β-glucans in the walls of pollen tubes of pollen tubes of Nicotiana alata using (1- 3)-β-glucan-specific monoclonal antibody. Planta 185: 1–8.
Melder E, Bossinger G, Spokevicius AV. 2015. Overexpression of ARBORKNOX1 delays the differentiation of induced somatic sector analysis (ISSA) derived xylem fibre cells in poplar stems. Tree Genet. Genom. 11: 87. DOI: 10.1007/s11295-015-0912-8.
Miller ML, Johnson DM. 2017. Vascular development in very young conifer seedlings: theoretical hydraulic capacities and potential resistance to embolism. Am. J. Bot. 104: 979–992. DOI: 10.3732/ajb.1700161.
Minsky M. 1988. Memoir on inventing the confocal scanning microscope. Scanning 10: 128–138. DOI: 10.1002/sca.4950100403.
Mitra PP, Loque D. 2014. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J. Vis. Exp. 87: e51381. DOI: 10.3791/51381.
Möller R, Koch G, Nanayakkara B, Schmitt U. 2006. Lignification in cell cultures of Pinus radiata: activities of enzymes and lignin topochemistry. Tree Physiol. 26: 201–210. DOI: 10.1093/treephys/26.2.201.
Morris H, Plavcova L, Gorai M, Klepsch MM, Kotowska M, Schenk HJ, Jansen S. 2018. Vessel-associated cells in angiosperm xylem: highly specialized living cells at the symplast-apoplast boundary. Am. J. Bot. 105: 151–160. DOI: 10.1002/ajb2.1030.
Müller G, Polle A. 2009. Imaging of lignin and cellulose in hardwood using Fourier transform infrared microscopy — comparison of two methods. NZ. J. For. Sci. 39: 225–231.
Obel N, Erben V, Schwarz T, Kuhnel S, Fodor A, Pauly M. 2009. Microanalysis of plant cell wall polysaccharides. Mol. Plant 2: 922–932. DOI: 10.1093/mp/ssp046.
Øbro J, Sørensen T, Möller I, Skjøt M, Mikkelsen JD, Willats WGT. 2007. High-throughput microarray analysis of pectic polymers by enzymatic epitope deletion. Carbohydr. Polym. 70: 77–81. DOI: 10.1016/j.carbpol.2007.03.008.
Öhman D, Demedts B, Kumar M, Gerber L, Gorzsás A, Goeminne G, Hedenström M, Ellis B, Boerjan W, Sundberg B. 2013. MYB103 is required for ferulate-5-hydroxylase expression and syringyl lignin biosynthesis in Arabidopsis stems. Plant J. 73: 63–76. DOI: 10.1111/tpj.12018.
Oldenbourg R. 2013. Polarized light microscopy: principles and practice. Cold Spring Harb. Protoc. 11: 1023–1036. DOI: 10.1101/pdb.top078600.
Olins JR, Lin L, Lee SJ, Trabucco GM, MacKinnon KJM, Hazen SP. 2018. Secondary wall regulating NACs differentially bind at the promoter at a cellulose synthase A4 Cis-eQTL. Front. Plant Sci. 9: 1895. DOI: 10.3389/fpls.2018.01895.
Ozparpucu M, Ruggeberg M, Gierlinger N, Cesarino I, Vanholme R, Boerjan W, Burgert I. 2017. Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for cinnamyl alcohol dehydrogenase (CAD). Plant J. 91: 480–490. DOI: 10.1111/tpj.13584.
Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, et al.2010. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol. 153: 514–525. DOI: 10.1104/pp.109.151985.
Patten AM, Cardenas CL, Cochrane FC, Laskar DD, Bedgar DL, Davin LB, Lewis NG. 2005. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry 66: 2092–2107. DOI: 10.1016/j.phytochem.2004.12.016.
Pendle A, Benitez-Alfonso Y. 2015. Immunofluorescence detection of callose deposition around plasmodesmata sites. In: Heinlein M (ed.), Plasmodesmata: methods and protocols: 95–104. Springer, New York, USA.
Perera PN, Schmidt M, Chiang VL, Schuck PJ, Adams PD. 2012. Raman-spectroscopy-based noninvasive microanalysis of native lignin structure. Anal. Bioanal. Chem. 402: 983–987. DOI: 10.1007/s00216-011-5518-x.
Persson S, Sørensen I, Möller I, Willats W, Pauly M. 2010. Dissection of plant cell walls by high-throughput methods. In: Ulvskov P (ed.), Annual plant reviews: 43–64. Wiley-Blackwell, New Jersey, USA.
Pohling C, Brackmann C, Duarte A, Buckup T, Enejder A, Motzkus M. 2014. Chemical imaging of lignocellulosic biomass by CARS microscopy. J. Biophotonics. 7: 126–134. DOI: 10.1002/jbio.201300052.
Potocka I, Godel K, Dobrowolska I, Kurczyńska EU. 2018. Spatio-temporal localization of selected pectic and arabinogalactan protein epitopes and the ultrastructural characteristics of explant cells that accompany the changes in the cell fate during somatic embryogenesis in Arabidopsis thaliana. Plant Physiol. Biochem. 127: 573–589. DOI: 10.1016/j.plaphy.2018.04.032.
Preston RD. 1974. The physical biology of plant cell walls. Chapman and Hall, London, United Kingdom.
Putoczki TL, Gerrard JA, Butterfield BG, Jackson SL. 2008. The distribution of un-esterified and methyl-esterified pectic polysaccharides in Pinus radiata. IAWA J. 29: 115–127. DOI: 10.1163/22941932-90000173.
Qi G, Hu RB, Yu L, Chai GH, Cao YP, Zuo R, Kong YZ, Zhou GK. 2013. Two poplar cellulose synthase-like D genes, PdCSLD5 and PdCSLD6, are functionally conserved with Arabidopsis CSLD3. J. Plant Physiol. 170: 1267–1276. DOI: 10.1016/j.jplph.2013.04.014.
Qin L, Zhang YW, Liu YQ, He HX, Han MM, Li YY, Zeng MM, Wang XD. 2018. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. Phytochem. Anal. 29: 351–364. DOI: 10.1002/pca.2759.
Qiu D, Wilson IW, Gan S, Washusen R, Moran GF, Southerton SG. 2008. Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytol. 179: 94–103. DOI: 10.1111/j.1469-8137.2008.02439.x.
Reiterer A, Lichtenegger H, Tschegg S, Fratzl P. 1999. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos. Mag. A. 79: 2173–2184. DOI: 10.1080/01418619908210415.
Reza M, Kontturi E, Jaaskelainen AS, Vuorinen T, Ruokolainen J. 2015. Transmission electron microscopy for wood and fiber analysis — a review. Bioresources. 10: 6230–6261.
Reza M, Rojas LG, Kontturi E, Vuorinen T, Ruokolainen J. 2014. Accessibility of cell wall lignin in solvent extraction of ultrathin spruce wood sections. ACS Sustain. Chem. Eng. 2: 804–808. DOI: 10.1021/sc400470m.
Richardson DS, Lichtman JW. 2015. Clarifying tissue clearing. Cell. 162: 246–257. DOI: 10.1016/j.cell.2015.06.067.
Richter S, Mussig J, Gierlinger N. 2011. Functional plant cell wall design revealed by the Raman imaging approach. Planta. 233: 763–772. DOI: 10.1007/s00425-010-1338-z.
Ruel K, Nishiyama Y, Joseleau JP. 2012. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci. 193: 48–61. DOI: 10.1016/j.plantsci.2012.05.008.
Ruggeberg M, Saxe F, Metzger TH, Sundberg B, Fratzl P, Burgert I. 2013. Enhanced cellulose orientation analysis in complex model plant tissues. J. Struct. Biol. 183: 419–428. DOI: 10.1016/j.jsb.2013.07.001.
Running MP, Clark SE, Meyerowitz EM. 1995. Confocal microscopy of the shoot apex. Methods Cell Biol. 49: 217–229. DOI: 10.1016/s0091-679x(08)61456-9.
Sandquist D, Norell L, Takabe K, Yoshinaga A, Daniel G. 2015. Anatomical and immunocoverage observations on SuSy, C4H, and pectate lyase family protein down-regulated aspens genotypes. Bioresources. 10: 5016–5029.
Sarkanen KV, Hergert HL. 1971. Classification and distribution. In: Sarkanen KV, Ludwig CH (eds.), Lignins, occurrence, formation, structure and reactions: 43–49. Wiley Interscience, New York.
Sato S, Kato T, Kakegawa K, Ishii T, Liu YG, et al.2001. Role of the putative membrane-bound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol. 42: 251–263. DOI: 10.1093/pcp/pce045.
Saxe F, Eder M, Benecke G, Aichmayer B, Fratzl P, Burgert I, Ruggeberg M. 2014. Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering. Plant Methods. 10: 25. DOI: 10.1186/1746-4811-10-25.
Schenk HJ, Espino S, Rich-Cavazos SM, Jansen S. 2018. From the sap’s perspective: the nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105: 172–185. DOI: 10.1002/ajb2.1034.
Schmidt M, Schwartzberg AM, Carroll A, Chaibang A, Adams PD, Schuck PJ. 2010. Raman imaging of cell wall polymers in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 395: 521–523. DOI: 10.1016/j.bbrc.2010.04.055.
Shchukarev A, Sundberg B, Mellerowicz E, Persson P. 2002. XPS study of living tree. Surf. Interface Anal. 34: 284–288. DOI: 10.1002/sia.1301.
Siebers AM. 1960. The detection of tension wood with fluorescent dyes. Stain Technol. 35: 247–251. DOI: 10.3109/10520296009114744.
Singh AP, Dawson BSW. 2014. FE-SEM characterisation of Pinus radiata solid wood and plywood surfaces following machining. IAWA J. 35: 69–84. DOI: 10.1163/22941932-00000049.
Singhal N, Kumar M, Kanaujia PK, Virdi JS. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6: 791. DOI: 10.3389/fmicb.2015.00791.
Sinn G, Reiterer A, Stanzl-Tschegg SE. 2001. Surface analysis of different wood species using X-ray photoelectron spectroscopy (XPS). J. Mater. Sci. 36: 4673–4680. DOI: 10.1023/a:1017954300015.
Smetana O, Makila R, Lyu M, Amiryousefi A, Rodriguez FS, et al.2019. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature. 565: 485–489. DOI: 10.1038/s41586-018-0837-0.
Snegireva AV, Ageeva MV, Amenitskii SI, Chernova TE, Ebskamp M, Gorshkova TA. 2010. Intrusive growth of sclerenchyma fibers. Russ. J. Plant Physiol. 57: 342–355. DOI: 10.1134/s1021443710030052.
Sotiriou P, Giannoutsou E, Panteris E, Apostolakos P, Galatis B. 2016. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants. Ann. Bot. 117: 401–419. DOI: 10.1093/aob/mcv187.
Spokevicius A, Taylor L, Melder E, Van Beveren K, Tibbits J, Creux N, Bossinger G. 2016. The use of induced somatic sector analysis (ISSA) for studying genes and promoters involved in wood formation and secondary stem development. J Vis Exp. 116: e54553. DOI: 10.3791/54553.
Spokevicius AV, Southerton SG, MacMillan CP, Qiu D, Gan S, Tibbits JFG, Moran GF, Bossinger G. 2007. β-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J. 51: 717–726. DOI: 10.1111/j.1365313X.2007.03176.x.
Stone BA, Evans NA, Bonig I, Clarke AE. 1984. The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122: 191–195. DOI: 10.1007/bf01281696.
Streit W, Fengel D. 1994. Heartwood formation in Quebracho colorado (Schinopsis balansae Engl.) — tannin distribution and penetration of extractives into the cell walls. Holzforschung 48: 361–367. DOI: 10.1515/hfsg.1994.48.5.361.
Sturtevant D, Lee YJ, Chapman KD. 2016. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr. Opin. Biotechnol. 37: 53–60. DOI: 10.1016/j.copbio.2015.10.004.
Sutherland P, Hallett I, Jones M. 2009. Probing cell wall structure and development by the use of antibodies: a personal perspective. NZ. J. For. Sci. 39: 197–205. DOI: 10.1080/03014220909510579.
Svedström K, Lucenius J, Van den Bulcke J, Van Loo D, Immerzeel P, et al.2012. Hierarchical structure of juvenile hybrid aspen xylem revealed using X-ray scattering and microtomography. Trees 26: 1793–1804. DOI: 10.1007/s00468-012-0748-x.
Taguchi A, Murata K, Nakano T. 2010. Observation of cell shapes in wood cross-sections during water adsorption by confocal laser-scanning microscopy (CLSM). Holzforschung 64: 627–631. DOI: 10.1515/hf.2010.092.
Takata N, Awano T, Nakata MT, Sano Y, Sakamoto S, Mitsuda N, Taniguchi T. 2019. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiol. 39: 514–525. DOI: 10.1093/treephys/tpz004.
Thomas J, Idris NA, Collings DA. 2017. Pontamine fast scarlet 4B bifluorescence and measurements of cellulose microfibril angles. J. Microsc. 268: 13–27. DOI: 10.1111/jmi.12582.
Thomas J, Ingerfeld M, Nair H, Chauhan SS, Collings DA. 2013. Pontamine fast scarlet 4B: a new fluorescent dye for visualising cell wall organisation in radiata pine tracheids. Wood Sci. Technol. 47: 59–75. DOI: 10.1007/s00226-012-0483-x.
Thorn K. 2016. A quick guide to light microscopy in cell biology. Mol. Biol. Cell. 27: 219–222. DOI: 10.1091/mbc.E15-02-0088.
Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol. 115: 577–585. DOI: 10.1104/pp.115.2.577.
Ursache R, Andersen TG, Marhavý P, Geldner N. 2018. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J. 93: 399–412. DOI: 10.1111/tpj.13784.
Verbelen JP, Kerstens S. 2000. Polarization confocal microscopy and Congo red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J. Microsc. 198: 101–107. DOI: 10.1046/j.1365-2818.2000.00691.x.
Verhertbruggen Y, Walker JL, Guillon F, Scheller HV. 2017. A comparative study of sample preparation for staining and immunodetection of plant cell walls by light microscopy. Front. Plant Sci. 8: 1505. DOI: 10.3389/fpls.2017.01505.
Wang P, Calvo-Polanco M, Reyt G, Barberon M, Champeyroux C, et al.2019. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci. Rep. 9: 4227. DOI: 10.1038/s41598-019-40588-5.
Wang SC, Li EY, Porth I, Chen JG, Mansfield SD, Douglas CJ. 2015. Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription factor PtrMYB152 in Arabidopsis. Sci. Rep. 4: 5054. DOI: 10.1038/srep05054.