The present study focusses on the application of 3D-reflected light microscopy (3D-RLM) for the wood anatomical identification of charcoal specimens produced from domestic and tropical timbers. This special microscopic technique offers a detailed investigation of anatomical features in charcoal directly compared with the quality of field emission scanning electron microscopy (FESEM). The advantages of using the 3D-RLM technology are that fresh fracture planes of charcoal can be directly observed under the microscope without further preparation or surface treatment. Furthermore, the 3D-technique with integrated polarized light illumination creates high-contrast images of uneven and black charcoal surfaces. Important diagnostic structural features such as septate fibres and intercellular canals can be clearly detected and intervessel pits are directly measured. The comparison of the microscopic analyses reveals that 3D-reflected light microscopy (3D-RLM) provides an effective alternative technique to conventional field emission scanning electron microscopy for the identification of carbonized wood.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ascough PL, Bird MI, Francis SM, Thornton B, Midwood A, Scott AC, Apperley D. 2011. Variability in oxidative degradation of charcoal: influence of production variables and environmental exposure. Geochim. Cosmochim. Ac. 75(9): 2361–2378. DOI: 10.1016/j.gca.2011.02.002.
Bird M, Ascough PHL, Young IM, Wood CHV, Scott AC. 2008. X-ray microtomographic imaging of charcoal. J. Archaeol. Sci. 35: 2698–2706. DOI: 10.1016/j.jas.2008.04.018.
Blankenhorn PR, Jenkins GM, Kline D. 1972. Dynamic mechanical properties and microstructure of carbonized hardwoods. Wood Fiber 4(3): 212–224.
Braadbaart F, Poole I. 2008. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. J. Archaeol. Sci. 35: 2434–2445.
Cutter BE, Cumbie BG, McGinnes A. 1980. SEM and shrinkage analyses of Southern pine wood following pyrolysis. Wood Sci. Technol. 14: 115–130.
Di Pasquale G, Marziano M, Impagliazzo S, Lubritto C, De Natale A, Bader MY. 2008. The Holocene treeline in the northern Andes (Ecuador): first evidence from soil charcoal. Palaeogeogr. Palaeocl. 259: 17–34. DOI: 10.1016/j.palaeo.2006.12.016.
Dias Leme CL, Cartwright C, Gasson P. 2010. Anatomical changes to the wood of Mimosa ophthalmocentra and Mimosa tenuiflora when charred at different temperatures. IAWA J. 31: 335–351. DOI: 10.1163/22941932-90000027.
FAO 2017. FAOSTAT Database. Forestry production and forest trade.
Figueiral I. 1999. Lignified and charcoalified fossil wood. In: Jones TP, Rowe NP (eds.), Fossil plants and spores: modern techniques: 92–96. The Geological Society, London.
Figueiral I, Mosbrugger V. 2000. A review of charcoal analysis as a tool for assessing quaternary and tertiary environments: achievements and limits. Palaeogeogr. Palaeocl. 164: 397–407.
Gale R, Cutler D. 2000. Plants in archaeology. Westbury Publishing, Otley.
Gonçalves TAP, Ballarin AW, Nigoski S, Muniz GIB. 2014. A contribution to the identification of charcoal origin in Brazil: I — anatomical characterization of Corymbia and Eucalyptus. Maderas-Cienc. Tecnol. 16: 323–336.
Gonçalves TAP, Marcati CR, Scheel-Ybert R. 2012. The effect of carbonization on wood structure of Dalbergia violacea, Stryphnodendron polyphyllum, Tapirira guianensis, Vochysia tucanorum and Pouteria torta from the Brazilian Cerrado. IAWA J. 33(1): 73–90. DOI: 10.1163/22941932-90000081.
Gonçalves TAP, Nigoski S, Oliveira JS, Marcati CR, Ballarin AW, Muñiz GIB. 2016. A contribution to the identification of charcoal origin in Brazil II — macroscopic characterization of Cerrado species. An. Acad. Bras. Ciênc. 88(2): 1045–1054. DOI: 10.1590/0001-3765201620150322.
Haag V, Koch G, Kaschuro S. 2017. Womit grillen wir da eigentlich? Wissenschaftliche Untersuchungen zeigen, dass viele Chargen zumindest fehlerhaft deklariert sind. Holz Zentralbl. 143(38): 876.
Heu R, Shahbazmohamadi S, Yorston J, Capeder P. 2019. Target material selection for sputter coating of SEM samples. Microscopy Today 27: 32–36. DOI: 10.1017/S1551929519000610.
Höhn A, Neumann K. 2012. Shifting cultivation and cultural landscape development during the Iron Age (0–1500 AD) in the Sahel of Burkina Faso, West Africa — Insights from archaeological charcoal. Quatern. Int. 249: 72–83. DOI: 10.1016/j.quaint.2011.04.012.
Hubau W, Van den Bulcke J, Kitin P, Brabant L, Van Acker J, Beeckmann H. 2013. Complementary imaging techniques for charcoal examination and identification. IAWA J. 34(2): 147–168. DOI: 10.1163/22941932-00000013.
Mannes D, Marone F, Lehmann E, Stampanoni M, Niemz P. 2010. Application areas of synchrotron radiation tomographic microscopy for wood research. Wood Sci. Technol. 44: 67–84. DOI: 10.1007/s00226-009-0257-2.
Prior J, Gasson P. 1993. Anatomical changes on charring six African hardwoods. IAWA J. 14: 77–86. DOI: 10.1163/22941932-90000579.
Scheel-Ybert R. 2000. Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. Rev. Paleobot. Palynol. 110: 111–138. DOI: 10.1016/s0034-6667(00)00004-x.
Scheel-Ybert R, Gonçalves TAP. 2017. Primeiro atlas antracológico de espécies Brasileiras / First anthracological atlas of Brazilian species. Museu Nacional, Rio de Janeiro.
Schweingruber FH. 1978. Mikroskopische Holzanatomie. Swiss Fed. Inst. Forestry Res. Ch-8903 Birmensdorf.
Schweingruber FH. 2012. Microtome sections of charcoal. Technical note. IAWA J. 33(3): 327–328. DOI: 10.1163/22941932-90000098.
Scott AC. 2000. The pre-quaternary history of fire. Palaeogeogr. Palaeocl. 164(1): 281–329. DOI: 10.1016/S0031-0182(00)00192-9.
Théry-Parisot I, Chabal L, Chrzavzez J. 2010. Anthrocology and taphonomy from wood gathering to charcoal analysis. A review of taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeogr. Palaeocl. 291: 142–153. DOI: 10.1016/j.palaeo.2009.09.016.
Van den Bulcke J, Boone M, Van Acker J, Stevens M, Van Hoorebeke L. 2009. X-ray tomography as a tool for detailed anatomical analysis. Ann. Forest Sci. 66(508): 1–12. DOI: 10.1051/forest/2009033.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1576 | 282 | 37 |
Full Text Views | 132 | 7 | 0 |
PDF Views & Downloads | 244 | 16 | 0 |
The present study focusses on the application of 3D-reflected light microscopy (3D-RLM) for the wood anatomical identification of charcoal specimens produced from domestic and tropical timbers. This special microscopic technique offers a detailed investigation of anatomical features in charcoal directly compared with the quality of field emission scanning electron microscopy (FESEM). The advantages of using the 3D-RLM technology are that fresh fracture planes of charcoal can be directly observed under the microscope without further preparation or surface treatment. Furthermore, the 3D-technique with integrated polarized light illumination creates high-contrast images of uneven and black charcoal surfaces. Important diagnostic structural features such as septate fibres and intercellular canals can be clearly detected and intervessel pits are directly measured. The comparison of the microscopic analyses reveals that 3D-reflected light microscopy (3D-RLM) provides an effective alternative technique to conventional field emission scanning electron microscopy for the identification of carbonized wood.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1576 | 282 | 37 |
Full Text Views | 132 | 7 | 0 |
PDF Views & Downloads | 244 | 16 | 0 |