Anatomical properties of Hibiscus macrophyllus and its mature wood development

In: IAWA Journal
View More View Less
  • 1 Forest Products Research and Development Center, Ministry of Environment and Forestry, Bogor, 16610, Indonesia
  • | 2 School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • | 3 Biology Research Center, Indonesian Institute of Science, Cibinong Research Center, Indonesia
  • | 4 Faculty of Forestry and Environment, IPB University, Bogor, 16680, Indonesia
Download Citation Get Permissions

Access options

Get access to the full article by using one of the access options below.

Institutional Login

Log in with Open Athens, Shibboleth, or your institutional credentials

Login via Institution


Buy instant access (PDF download and unlimited online access):



The Hibiscus macrophyllus tree is widely planted in Indonesia especially on Java Island. It has several advantages to be developed commercially as a community or plantation forest compared to the famous introduced species Falcataria moluccana and Anthocephalus spp., including faster growth, higher wood density, and better stem morphology (straighter, more rounded, and lesser branches). However, information about the basic properties of this wood grown in plantations is limited. This study aimed to investigate the anatomical properties of H. macrophyllus and their variation at three ages (8, 12 and 16 years old), as well as to predict the mature wood development by using radial variation in fiber length, microfibril angle (MFA), and wood density from pith toward the bark as the indicators. The wood samples were obtained from a community forest area at Ciamis Regency, West Java Province. Furthermore, anatomical characteristics were examined through wood slides following the IAWA List, while fibre and vessel element dimensions were measured through macerated specimens prepared by modified Franklin’s method. The MFA was determined by X-Ray Diffraction, while wood density was measured in line with British Standard 373-57. The results showed that the anatomical structures were not influenced by tree age, except for wood porosity, and fibre and vessel element dimensions. The 16-year-old tree tended to be semi-ring-porous, the younger trees were diffuse-porous, while the fiber and vessel element length, as well as the diameter, were decreased. Meanwhile, the wall thickness was increased. The fibre length, MFA, and wood density were useful indicators for wood maturity that seemed to be developed at about 11 years of age.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 27 27 27
Full Text Views 3 3 3
PDF Views & Downloads 10 10 10