The formation of juvenile wood featuring greater cell variation relative to mature wood is a well-known phenomenon. Once wood attains maturity, it has both more consistent cell sizes and organization. This is especially well understood for large trees used for paper and timber production, but less so for shrubs and bushes. Despite its importance, there is very little information on the wood anatomy and wood maturation available for some lineages such as the Loranthaceae (Santalales), which are mostly composed of shrubby mistletoes. Here, we studied three of the largest known mistletoe species to analyse the variation of xylem structure within both the radial and the axial axis of the stem. Using classical anatomical techniques, we determined at which point, both in thickness and in distance from the apex, these parasitic plants start producing mature wood. We measured vessel element length, fibre length, vessel diameter, and vessel density on multiple points of either very thick or very long branches of three different mistletoe species: Struthanthus rhynchophyllus, Tripodanthus acutifolius and Psittacanthus robustus. Our findings suggest that Loranthaceae mistletoes reach wood maturity rather early, with very minor differences between juvenile and mature woods. These results open new avenues for further research on the wood anatomy of mistletoe’s stems, enabling the use of smaller samples, such as those commonly present in herbarium vouchers.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amaral MM, Ceccantini G. 2011. The endoparasite Pilostyles ulei (Apodanthaceae–Cucurbitales) influences wood structure in three host species of Mimosa. IAWA J. 32: 1–13. DOI: 10.1163/22941932-90000038.
Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S. 2006. Convergent tapering of xylem conduits in different woody species. New Phytol. 169(2): 279–290. DOI: 10.1111/j.1469-8137.2005.01587.x.
Bao FC, Jiang ZH, Jiang XM, Lu XX, Luo XQ, Zhang SY. 2001. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci. Technol. 35(4): 363–375. DOI: 10.1007/s002260100099.
Barão V. 2016. Relações hídricas e anatomia da relação parasita-hospedeira entre Psittacanthus robustus e Vochysia thyrsoidea. Universidade de São Paulo, São Paulo. DOI: 10.11606/D.41.2016.tde-23102015-145319.
Barbosa ACF, Pace MR, Witovisk L, Angyalossy V. 2010. A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA J. 31(4): 373–383. DOI: 10.1163/22941932-90000030.
Berlyn GP, Miksche JP. 1976. Botanical microtechnique and cytochemistry. Iowa State University Press. Ames, IA.
Bhat KM, Priya PB, Rugmini P. 2001. Characterisation of juvenile wood in teak. Wood Sci. Technol. 34: 517–532. DOI: 10.1007/s002260000067.
Bouwmeester H, Sinha N, Scholes J. 2021. Parasitic plants: physiology, development, signalling, and ecosystem interactions. Plant Physiol. 185(4): 1267–1269. DOI: 10.1093/plphys/kiab055.
Burdon RD, Kibblewhite RP, Walker JCF, Megraw RA, Evans R, Cown DJ. 2004. Juvenile versus mature wood: a new concept, orthogonal to corewood versus outerwood, with special reference to Pinus radiata and P. taeda. For. Sci. 50(4): 399–415. DOI: 10.1093/forestscience/50.4.399.
Calder M, Bernhardt P. 1983. The biology of mistletoes. Academic Press. New York, NY.
Carlquist S. 1975. Ecological strategies of xylem evolution, 1st Edn. University of California Press. Berkeley, CA.
Ceccantini G. 1996. Anatomia ecológica do lenho de espécies de cerrado e mata: Casearia sylvestris Sw. e Machaerium villosum Vog. MSc thesis. Universidade de São Paulo. São Paulo.
Dasdwell H. 1960. Tree growth-wood property inter-relationships. Proceedings special field-institute in forest biology. School of Forestry, Raleigh, NC.
Day ME, Greenwood MS, Diaz-Sala C. 2002. Age- and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol. 22(8): 507–513. DOI: 10.1093/treephys/22.8.507.
De Micco V, Aronne G, Baas P. 2008. Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees Struct. Funct. 22(5): 643–655. DOI: 10.1007/s00468-008-0222-y.
Enquist BJ. 2002. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22(15–16): 1045–1064. DOI: 10.1093/TREEPHYS/22.15-16.1045.
Evans JW, Senft JF, Green DW. 2000. Juvenile wood effect in red alder: analysis of physical and mechanical data to delineate juvenile and mature wood zones. For. Prod. J. 50(7–8): 75–87.
Fan Z-X, Cao K-F, Becker P. 2009. Axial and radial variations in xylem anatomy of angiosperm and conifer trees in Yunnan, China. IAWA J. 30(1): 1–13. DOI: 10.1163/22941932-90000198.
Ferreirinha MP. 1958. Elementos de anatomia de madeiras folhosas portuguesas Memórias da Junta de Investigações do Ultramar vol. 3, Lisboa.
Gerolamo CS, Angyalossy V. 2017. Wood anatomy and conductivity in lianas, shrubs and trees of Bignoniaceae. IAWA J. 38(3): 412–432. DOI: 10.1163/22941932-20170177.
Glatzel G, Geils BW. 2009. Mistletoe ecophysiology: host–parasite interactions. Botany 87(1): 10–15. DOI: 10.1139/B08-096.
Heide-Jørgensen H. 2008. Parasitic flowering plants. Brill. Leiden. DOI: 10.1163/ej.9789004167506.i-438.
IAWA Commitee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bulletinn n.s. 10(3): 219–332.
InsideWood. 2004-onwards. InsideWood Database. Available online at http://insidewood.lib.ncsu.edu/search (accessed 14 April 20210).
Jacobsen AL, Ewers FW, Pratt RB, Iii WAP, Davis SD. 2005. Do xylem fibers affect vessel cavitation resistance? Plant Physiol. 139(1): 546–556. DOI: 10.1104/pp.104.058404.
Jacobsen AL, Valdovinos-Ayala J, Rodriguez-Zaccaro FD, Hill-Crim MA, Percolla MI, Venturas MD. 2018. Intra-organismal variation in the structure of plant vascular transport tissues in poplar trees. Trees Struct. Funct. 32(5): 1335–1346. DOI: 10.1007/s00468-018-1714-z.
Jono V, Locosselli GM, Ceccantini G. 2013. The influence of tree size and microenvironmental changes on the wood anatomy of Roupala rhombifolia. IAWA J. 34(1): 88–106. DOI: 10.1163/22941932-00000008.
Kuijt J, Hansen B. 2015. Flowering plants. Eudicots. Springer International, Cham. DOI: 10.1007/978-3-319-09296-6.
Kuijt J, Lye D. 2005. Gross xylem structure of the interface of Psittacanthus ramiflorus (Loranthaceae) with its hosts and with a hyperparasite. Bot. J. Linn. Soc. 147(2): 197–201. DOI: 10.1111/j.1095-8339.2005.00370.x.
Lachenbruch B, Moore JR, Evans R. 2011. Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. Tree Physiol. 4: 121–164. DOI: 10.1007/978-94-007-1242-3_5.
Liu B, Le CT, Barrett RL, Nickrent DL, Chen Z, Lu L, Vidal-Russell R. 2018. Historical biogeography of Loranthaceae (Santalales): diversification agrees with emergence of tropical forests and radiation of songbirds. Mol. Phylogenet. Evol. 124: 199–212. DOI: 10.1016/j.ympev.2018.03.010.
Liu J, Noshiro S. 2003. Lack of latitudinal trends in wood anatomy of Dodonaea viscosa (Sapindaceae), a species with a worldwide distribution. Am. J. Bot. 90(4): 532–539. DOI: 10.3732/ajb.90.4.532.
McCulloh KA, Sperry JS. 2005. Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiol. 25(3): 257–267. DOI: 10.1093/TREEPHYS/25.3.257.
Metcalfe CR, Chalk L. 1950. Anatomy of the Dicotyledons: 1188–1195. Clarendon Press, London.
Microsoft. 2021. Microsoft Excel. Available online at https://office.microsoft.com/excel.
Mourão FA, Pereira Pinheiro RB, Jacobi CM, Figueira JEC. 2017. Resource-directed foraging of the Neotropical mistletoe Struthanthus flexicaulis (Loranthaceae). Plant Biol. 19: 592–598. DOI: 10.1111/plb.12559.
Nickrent DL, Malécot V, Vidal-Russell R, Der JP. 2010. A revised classification of Santalales. Taxon 59(2): 538–558. DOI: 10.1002/tax.592019.
Noshiro S, Baas P. 2000. Latitudinal trends in wood anatomy within species and genera: case study in Cornus s.l. (Cornaceae). Am. J. Bot. 87(10): 1495–1506. DOI: 10.2307/2656876.
Olson ME, Rosell JA. 2013. Vessel diameter–stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytol. 197(4): 1204–1213. DOI: 10.1111/nph.12097.
Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M. 2014. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Lett. 17(8): 988–997. DOI: 10.1111/ele.12302.
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Camarero Martínez J, Castorena M, Echeverría A, Espinosa CI, Fajardo A, Gazol A, Isnard S, Lima RS, Marcati CR, Méndez-Alonzo R. 2018. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl. Acad. Sci. USA 115(29): 7551–7556. DOI: 10.1073/pnas.1721728115.
Pace MR, Angyalossy V. 2013. Wood anatomy and evolution: a case study in the Bignoniaceae. Int. J. Plant Sci. 174(7): 1014–1048. DOI: 10.1086/670258.
Patel RN. 1991. Wood anatomy of the dicotyledons indigenous to New Zealand 21. Loranthaceae, NZ J. Bot. 29(4): 429–449. DOI: 10.1080/0028825X.1991.10415495.
Petit G, Anfodillo T. 2009. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. J. Theor. Biol. 259(1): 1–4. DOI: 10.1016/j.jtbi.2009.03.007.
Press MC, Phoenix GK. 2005. Impacts of parasitic plants on natural communities. New Phytol. 166(3): 737–751. DOI: 10.1111/j.1469-8137.2005.01358.x.
R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, available online at https://www.R-project.org/.
Rao RV, Hemavathi TR, Sujatha M, Chauhan L, Raturi RD. 1998. Stemwood and rootwood anatomy of Santalum album L. and the problem of wood adulteration. ACIAR Proc 84: 93–102.
Rodriguez-Zaccaro FD, Valdovinos-Ayala J, Percolla MI, Venturas MD, Pratt RB, Jacobsen AL. 2019. Wood structure and function change with maturity: age of the vascular cambium is associated with xylem changes in current-year growth. Plant Cell Environ. 42: 1816–1831. DOI: 10.1111/pce.13528.
Rosell JA, Olson ME, Anfodillo T. 2017. Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Curr. For. Rep. 3(1): 46–59. DOI: 10.1007/s40725-017-0049-0.
Santos CFO, Nogueira IR. 1971. A idade adulta do Eucalyptus saligna Smith em Rio Claro Estado de São Paulo, determinada pelas dimensões das fibras. Anais Da Escola Superior de Agricultura Luiz de Queiroz 28: 165–175. DOI: 10.1590/s0071-12761971000100010.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671–675. PMID 22930834.
Schweingruber FH, Börner A, Schulze ED. 2011. Atlas of stem anatomy in herbs, shrubs and trees. Springer, Berlin. DOI: 10.1007/978-3-642-11638-4.
Sirviö J, Kärenlampi P. 2001. The effects of maturity and growth rate on the properties of spruce wood tracheids. Wood Sci. Technol. 35(6): 541–554. DOI: 10.1007/s002260100119.
Tasissa G, Burkhart HE, Brooks TM. 1998. Juvenile-mature wood demarcation in Loblolly pine trees. Wood Fiber Sci. 30(2): 119–127.
Taylor BWF. 1968. Variations in the size and proportions of wood elements in yellow-poplar trees. Wood Sci. Technol. 2: 153–165. DOI: 10.1007/BF00350905.
Teixeira-Costa L, Ceccantini G. 2015. Embolism increase and anatomical modifications caused by a parasitic plant: Phoradendron crassifolium (Santalaceae) on Tapirira guianensis (Anacardiaceae). IAWA J. 36: 138–151. DOI: 10.1163/22941932-90000038.
Teixeira-Costa L, Ocapo G, Ceccantini G. 2020. Morphogenesis and evolution of mistletoes’ haustoria. In: Demarco D (ed.), Plant ontogeny: 107–157. Nova Science Publishers, Hauppauge, NY.
Van Ommeren RJ, Whitham TG. 2002. Changes in interactions between juniper and mistletoe mediated by shared avian frugivores: parasitism to potential mutualism. Oecologia 130(2): 281–288. DOI: 10.1007/s004420100792.
Watson DM, Herring M. 2012. Mistletoe as a keystone resource: an experimental test. Proc. Roy. Soc. Lond. B: Biol. Sci. 279(1743): 3853–3860. DOI: 10.1098/rspb.2012.0856.
Wheeler EA. 2011. InsideWood — a web resource for hardwood anatomy. IAWA J. 32(2): 199–211.
Zobel BJ, Sprague JR. 1998. Juvenile wood in forest trees, 1st Edn. Springer, Berlin. DOI: 10.1007/978-3-642-72126-7.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1011 | 332 | 128 |
Full Text Views | 46 | 7 | 5 |
PDF Views & Downloads | 93 | 12 | 8 |
The formation of juvenile wood featuring greater cell variation relative to mature wood is a well-known phenomenon. Once wood attains maturity, it has both more consistent cell sizes and organization. This is especially well understood for large trees used for paper and timber production, but less so for shrubs and bushes. Despite its importance, there is very little information on the wood anatomy and wood maturation available for some lineages such as the Loranthaceae (Santalales), which are mostly composed of shrubby mistletoes. Here, we studied three of the largest known mistletoe species to analyse the variation of xylem structure within both the radial and the axial axis of the stem. Using classical anatomical techniques, we determined at which point, both in thickness and in distance from the apex, these parasitic plants start producing mature wood. We measured vessel element length, fibre length, vessel diameter, and vessel density on multiple points of either very thick or very long branches of three different mistletoe species: Struthanthus rhynchophyllus, Tripodanthus acutifolius and Psittacanthus robustus. Our findings suggest that Loranthaceae mistletoes reach wood maturity rather early, with very minor differences between juvenile and mature woods. These results open new avenues for further research on the wood anatomy of mistletoe’s stems, enabling the use of smaller samples, such as those commonly present in herbarium vouchers.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1011 | 332 | 128 |
Full Text Views | 46 | 7 | 5 |
PDF Views & Downloads | 93 | 12 | 8 |