The monitoring of xylogenesis makes it possible to follow tree growth responses to stress factors in real-time, by observing the course of wood cell division and differentiation. Proper microscopy techniques are of key importance to exactly identify the xylem cells during the different phases of differentiation. We aimed to apply epifluorescence microscopy to follow the lignification process during the different phases of xylogenesis in Mediterranean softwood and hardwood. Microcores from trees of Pinus halepensis Mill. and Arbutus unedo L. were collected at a site in southern Italy, during the period June-December. Fluorescence imaging of sections stained with a water solution of safranin and Astra blue clearly highlighted the contrast between lignified and un-lignified tissue. The proposed methodology is useful to quickly and unambiguously detect the different stages of cell differentiation, as well as the progress in the lignification process. Moreover, it proved to be easily applied to demanding wood materials, such as Mediterranean woods and can be helpful to better track stress responses and the development of anomalies during wood formation, such as intra-annual density fluctuations.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Balzano A, Čufar K, Battipaglia G, Merela M, Prislan P, Aronne G, De Micco V. 2018. Xylogenesis reveals the genesis and ecological signals of IADFs in Pinus pinea L. and Arbutus unedo L. Ann. Bot. 121(6): 1231–1242. DOI: 10.1093/aob/mcy008.
Balzano A, Čufar K, De Micco V. 2021. Xylem and phloem formation dynamics in Quercus ilex L. at a dry site in southern Italy. Forests 12: 188. DOI: 10.3390/f12020188.
Beeckman H. 2016. Wood anatomy and trait-based ecology. IAWA J. 37(2): 127–151. DOI: 10.1163/22941932-20160127.
Bond J, Donaldson L, Hill S, Hitchcock K. 2008. Safranin fluorescent staining of wood cell walls. Biotech. Histochem. 83(3-4): 161–171. DOI: 10.1080/10520290802373354.
Buttò V, Rossi S, Deslauriers A, Morin H. 2019. Is size an issue of time? Relationship between the duration of xylem development and cell traits. Ann. Bot. 123(7): 1257–1265. DOI: 10.1093/aob/mcz032.
Cailleret M, Dakos V, Jansen S, Robert EM, Aakala T, et al.2019. Early-warning signals of individual tree mortality based on annual radial growth. Front. Plant Sci. 9: 1964. DOI: 10.3389/fpls.2018.01964.
Camarero JJ, Sangüesa-Barreda G, Vergarechea M. 2016. Prior height, growth, and wood anatomy differently predispose to drought-induced dieback in two Mediterranean oak species. Ann. For. Sci. 73(2): 341–351. DOI: 10.1007/s13595-015-0523-4.
Campelo F, Nabais C, Gutiérrez E, Freitas H, García-González I. 2010. Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees 24(3): 463–470. DOI: 10.1007/s00468-010-0414-0.
Carlquist S. 2013. Fibre dimorphism: cell type diversification as an evolutionary strategy in angiosperm woods. Bot. J. Linnean Soc. 174: 44–67. DOI: 10.1111/boj.12107.
Courtois-Moreau C, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, et al.2009. A unique program for cell death in xylem fibers of Populus stem. Plant J. 58(2): 260–274. DOI: 10.1111/j.1365-313X.2008.03777.x.
Čufar K, Prislan P, De Luis M, Gričar J. 2008. Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22(6): 749–758. DOI: 10.1007/s00468-008-0235-6.
Čufar K, Cherubini M, Gričar J, Prislan P, Spina S, Romagnoli M. 2011. Xylem and phloem formation in chestnut (Castanea sativa Mill.) during the 2008 growing season. Dendrochronologia 29(3): 127–134. DOI: 10.1016/j.dendro.2011.01.006.
De Luis M, Gričar J, Čufar K, Raventós J. 2007. Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J. 28(4): 389–404. DOI: 10.1163/22941932-90001651.
De Micco V, Aronne G. 2007. Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls. Biotech. Histochem. 82(4-5): 209–216. DOI: 10.1080/10520290701713981.
De Micco V, Balzano A, Čufar K, Aronne G, Gričar J, Merela M, Battipaglia G. 2016a. Timing of false ring formation in Pinus halepensis and Arbutus unedo in southern Italy: outlook from an analysis of xylogenesis and tree–ring chronologies. Front. Plant Sci. 7: 705. DOI: 10.3389/fpls.2016.00705.
De Micco V, Campelo F, De Luis M, Bräuning A, Grabner M, Battipaglia G, Cherubini P. 2016b. Intra-annual density fluctuations in tree rings: how, when, where, and why? IAWA J. 37(2): 232–259. DOI: 10.1163/22941932-20160132.
De Micco V, Carrer M, Rathgeber CB, Camarero JJ, Voltas J, Cherubini P, Battipaglia G. 2019. From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA J. 40(2): 155–182. DOI: 10.1163/22941932-40190246.
Deslauriers A, Fonti P, Rossi S, Rathgeber CB, Gričar J. 2017. Ecophysiology and plasticity of wood and phloem formation. In: Amoroso M, Daniels L, Baker P, Camarero JJ (eds.), Dendroecology. Ecological studies (analysis and synthesis) 231: 13–33. Springer, Cham. DOI: 10.1007/978-3-319-61669-8_2.
Deslauriers A, Rossi S, Liang E. 2015. Collecting and processing wood microcores for monitoring xylogenesis. In: Yeung E, Stasolla C, Sumner M, Huang B (eds.), Plant microtechniques and protocols: 417–429. Springer, Cham. DOI: 10.1007/978-3-319-19944-3_23.
Dickson A, Nanayakkara B, Sellier D, Meason D, Donaldson L, Brownlie R. 2017. Fluorescence imaging of cambial zones to study wood formation in Pinus radiata D. Don. Trees 31: 479–490. DOI: 10.1007/s00468-016-1469-3.
Donaldson L. 2020. Autofluorescence in plants. Molecules 25(10): 2393. DOI: 10.3390/molecules25102393.
Donaldson LA. 1991. Seasonal changes in lignin distribution during tracheid development in Pinus radiata D. Don. Wood Sci. Technol. 25(1): 15–24.
Donaldson LA. 2001. Lignification and lignin topochemistry — an ultrastructural view. Phytochem. 57(6): 859–873. DOI: 10.1016/S0031-9422(01)00049-8.
Donaldson LA. 2002. Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees. IAWA J. 23(2): 161–178. DOI: 10.1163/22941932-90000295.
Donaldson LA, Singh AP. 2013. Structure and formation of compression wood. In: Fromm J (ed.), Cellular aspects of wood formation. Plant cell monographs: 225–256. Springer.
Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P. 2006. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann. Bot. 97(6): 943–951. DOI: 10.1093/aob/mcl050.
Haseloff J. 2003. Old botanical techniques for new microscopes. Biotechniques 34(6): 1174–1182.
Mayer K, Grabner M, Rosner S, Felhofer M, Gierlinger N. 2020. A synoptic view on intra-annual density fluctuations in Abies alba. Dendrochronologia 64: 125781. DOI: 10.1016/j.dendro.2020.125781.
Nanayakkara B, Dickson AR, Meason DF. 2019. Xylogenesis of Pinus radiata D. Don growing in New Zealand. Annals Forest Sci. 76: 74. DOI: 10.1007/s13595-019-0859-2.
Novak K, De Luis M, Gričar J, Prislan P, Merela M, Smith KT, Čufar K. 2016. Missing and dark rings associated with drought in Pinus halepensis. IAWA J. 37(2): 260–274. DOI: 10.1163/22941932-20160133.
Olmstead JA, Gray DG. 1997. Fluorescence spectroscopy of cellulose, lignin and mechanical pulps: a review. J. Pulp Paper Sci. 23(12): J571–J581.
Pratt RB, Jacobsen AL. 2017. Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant Cell Environ. 40(6): 897–913. DOI: 10.1111/pce.12862.
Prislan P, Koch G, Čufar K, Gričar J, Schmitt U. 2009. Topochemical investigations of cell walls in developing xylem of beech (Fagus sylvatica L.). Holzforschung 63(4): 482–490. DOI: 10.1515/HF.2009.079.
Prislan P, Gričar J, Čufar K. 2014. Wood sample preparation for microscopic analysis. University of Ljubljana, Department of Wood Science and Technology.
Prislan P, Gričar J, De Luis M, Novak K, Martinez del Castillo E, et al.2016. Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation. Front. Plant Sci. 7: 1923. DOI: 10.3389/fpls.2016.01923.
Rathgeber CB, Cuny HE, Fonti P. 2016. Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7: 734. DOI: 10.3389/fpls.2016.00734.
Rossi S, Anfodillo T, Menardi R. 2006a. Trephor: a new tool for sampling microcores from tree stems. IAWA J. 27(1): 89–97. DOI: 10.1163/22941932-90000139.
Rossi S, Deslauriers A, Anfodillo T. 2006b. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA J. 27(4): 383–394. DOI: 10.1163/22941932-90000161.
Rossi S, Simard S, Rathgeber CB, Deslauriers A, De Zan C. 2009. Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees 23: 85–93. DOI: 10.1007/s00468-008-0257-0.
Schuetz M, Smith R, Ellis B. 2013. Xylem tissue specification, patterning, and differentiation mechanisms. J. Exp. Bot. 64(1): 11–31. DOI: 10.1093/jxb/ers287.
Van der Werf GW, Sass-Klaassen UG, Mohren GMJ. 2007. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25(2): 103–112. DOI: 10.1016/j.dendro.2007.03.004.
Vazquez-Cooz I, Meyer RW. 2002. A differential staining method to identify lignified and unlignified tissues. Biotech. Histochem. 77(5-6): 277–282.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1315 | 258 | 62 |
Full Text Views | 108 | 10 | 1 |
PDF Views & Downloads | 225 | 23 | 1 |
The monitoring of xylogenesis makes it possible to follow tree growth responses to stress factors in real-time, by observing the course of wood cell division and differentiation. Proper microscopy techniques are of key importance to exactly identify the xylem cells during the different phases of differentiation. We aimed to apply epifluorescence microscopy to follow the lignification process during the different phases of xylogenesis in Mediterranean softwood and hardwood. Microcores from trees of Pinus halepensis Mill. and Arbutus unedo L. were collected at a site in southern Italy, during the period June-December. Fluorescence imaging of sections stained with a water solution of safranin and Astra blue clearly highlighted the contrast between lignified and un-lignified tissue. The proposed methodology is useful to quickly and unambiguously detect the different stages of cell differentiation, as well as the progress in the lignification process. Moreover, it proved to be easily applied to demanding wood materials, such as Mediterranean woods and can be helpful to better track stress responses and the development of anomalies during wood formation, such as intra-annual density fluctuations.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1315 | 258 | 62 |
Full Text Views | 108 | 10 | 1 |
PDF Views & Downloads | 225 | 23 | 1 |