An essential stage in woody plant ontogeny (heartwood (HW) formation) determines tree resistance to weather conditions, wood quality (moisture, colour, resistance to biodegradation), and regulates the proportion of functionally active sapwood (SW) in the total trunk biomass. In this study, the patterns of HW formation depending on tree age and cambial age within the same tree were studied in the North-West of Russia in Scots pine in a lingonberry pine forest. It is shown that HW either repeats the trunk profile or shows a maximum proportion on average at the height of 1.5 m. Models using the square root transformation and logarithm transformation have been proposed to predict the number of annual rings in HW depending on the cambial age. Multiple regression is proposed to predict the radial width in HW. Validation of the developed models on random trees gave a good result. HW formation begins at the age of 17–18 years and continues at the rate of 0.3 rings per year for 20–30-year-old trees, 0.4–0.5 rings per year for 70–80-year-old trees, and about 0.7 rings per year for 180-year-old trees. The lifespan of xylem parenchyma cells ranged from 10–15 years in 20-year-old trees to 70 years in 180-year-old trees. At the age of the previous felling (70–80 years) the HW area in the trunk biomass is about 20%, and in 180-year-old pine forests, it increases to 50%. These data can be used to assess the role of old-growth forests in carbon sequestration.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Anan’ev VA, Moshnikov SA. 2016. Structure and dynamics of the forest reserves of the Republic of Karelia. Lesnoy Zh. 4: 19–29. DOI: 10.17238/issn0536-1036.2016.4.19.
Bamber RK, Fukazawa K. 1985. Sapwood and heartwood: a review. For. Prod. Abstr. 46(9): 567–580.
Beekwilder J, van Houwelingen A, Cankar K, van Dijk ADJ, de Jong RM, Stoopen G, Bouwmeester H, Achkar J, Sonke T, Bosch D. 2013. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol. J. 12(2): 174–182. DOI: 10.1111/pbi.12124.
Bergström B, Gustafsson G, Gref R, Ericsson A. 1999. Seasonal changes of pinosylvin distribution in the sapwood/heartwood boundary of Pinus sylvestris. Trees 14(2): 65–71. DOI: 10.1007/pl00009754.
Bergström B. 2003. Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 76(1): 45–53. DOI: 10.1093/forestry/76.1.45.
Bert D, Danjon F. 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For. Ecol. Manage. 222(1–3): 279–295. DOI: 10.1016/j.foreco.2005.10.030.
Berthier S, Kokutse AD, Stokes A, Fourcaud T. 2001. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 87(1): 19–25. DOI: 10.1006/anbo.2000.1290.
Björklund L. 1999. Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva Fennica 33(2): 119–129. DOI: 10.14214/sf.662.
Brandt JP, Flannigan MD, Maynard DG, Thompson ID, Volney WJA. 2013. An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ. Rev. 21(4): 207–226. DOI: 10.1139/er-2013-0040.
Celedon JM, Chiang A, Yuen MMS, Diaz-Chavez ML, Madilao LL, Finnegan PM, Barbour EL, Bohlmann J. 2016. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J. 86(4): 289–299. DOI: 10.1111/tpj.13162.
Climent J, Chambel MR, Gil L, Pardos JA. 2003. Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. For. Ecol. Manage. 174(1–3): 203–211. DOI: 10.1016/s0378-1127(02)00023-3.
Dadswell HE, Hillis WE. 1962. Wood. In: Hillis WE (ed.), Wood extractives and their significance to the pulp and paper industry: 3–55. Academic Press, New York, NY.
de Aza CH, Turrión MB, Pando V, Bravo F. 2011. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Ann. For. Sci. 68(6): 1067–1076. DOI: 10.1007/s13595-011-0122-y.
Ekeberg D, Flæte P-O, Eikenes M, Fongen M, Naess-Andresen CF. 2006. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 1109(2): 267–272. DOI: 10.1016/j.chroma.2006.01.027.
Esteves B, Gominho J, Rodrigues JC, Miranda I, Pereira H. 2005. Pulping yield and delignification kinetics of heartwood and sapwood of maritime pine. J. Wood Chem. Technol. 25(4): 217–230. DOI: 10.1080/02773810500366656.
Esteves B, Nunes L, Domingos I, Pereira H. 2013. Comparison between heat treated sapwood and heartwood from Pinus pinaster. Eur. J. Wood Wood Prod. 72(1): 53–60. DOI: 10.1007/s00107-013-0751-y.
Ezquerra FJ, Gil L. 2001. Wood anatomy and stress distribution in the stem of Pinus pinaster Ait. Investigación agraria: Sistemas y recursos forestales 10(1): 165–209.
Fagerstedt K, Saranpää P, Piispanen R. 1998. Peroxidase activity, isoenzymes and histological localisation in sapwood and heartwood of Scots pine (Pinus sylvestris L.). J. For. Res. 3(1): 43–47. DOI: 10.1007/bf02760292.
Flæte PO, Haartveit EY. 2004. Non-destructive prediction of decay resistance of Pinus sylvestris heartwood by near infrared spectroscopy. Scand. J. For. Res. 19(5): 55–63. DOI: 10.1080/02827580410017852.
Flæte PO, Høibø O. 2009. Models for predicting vertical profiles of heartwood diameter in mature Scots pine. Can. J. Forest Res. 39(3): 527–536. DOI: 10.1139/x08-187.
Fries A, Ericsson T. 1998. Genetic parameters in diallel-crossed Scots pine favor heartwood formation breeding objectives. Can. J. For. Res. 28(6): 937–941. DOI: 10.1139/x98-061.
Gjerdrum P. 2003. Heartwood in relation to age and growth rate in Pinus sylvestris L. in Scandinavia. Forestry 76(4): 413–424. DOI: 10.1093/forestry/76.4.413.
Hauch S, Magel E. 1998. Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207(2): 266–274. DOI: 10.1007/s004250050482.
Hazenberg G, Yang KC. 1991. Sapwood/heartwood width relationships with tree age in balsam fir. IAWA J. 12(1): 95–99. DOI: 10.1163/22941932-90001210.
Hillis WE. 1987. Heartwood and tree exudates. Springer series in wood science 4. Springer, Heidelberg. DOI: 10.1007/978-3-642-72534-0.
IAWA Committee. 1964. Multilingual glossary of terms used in wood anatomy. Konkordia, Winterthur.
Kamdem DP. 1994. Fungal decay resistance of aspen blocks treated with heartwood extracts. For. Prod. J. 44(1): 30.
Kazimirov NI, Volkov AD, Zjabchenko SS, Ivanchikov AA, Morozova RM. 1977. The exchange of matter and energy in the pine forests of the European north. Nauka, Leningrad. (in Russian).
Kennedy SG, Yanchuk AD, Jefferson PA. 2013. Relationship of heartwood traits with diameter growth, implications for genetic selection in Pinus radiata. Tree Genet. Genomes 9(5): 1313–1319. DOI: 10.1007/s11295-013-0639-3.
Knapic S, Pereira H. 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 210(1–3): 81–89. DOI: 10.1016/j.foreco.2005.02.017.
Kühn A. 1918. Entwicklungsgeschichte und Verwandtschaftsbeziehungen der Hydrozoen: Die Hydroiden. I. Gustav Fischer, Stuttgart.
Lamlom SH, Savidge RA. 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenerg. 25(4): 381–388. DOI: 10.1016/s0961-9534(03)00033-3.
Lappi-Seppälä M. 1952. Männyn sydänpuusta ja runko-muodosta. Commun. Inst. For. Fenn. 40(25): 1–26.
Lerceteau E, Plomion C, Andersson B. 2000. AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol. Breeding 6(5): 451–458. DOI: 10.1023/a:1026548716320.
Leskinen P, Cardellini G, González-García S, Hurmekoski E, Sathre R, Seppälä J, Smyth C, Stern T, Verkerk PJ. 2018. Substitution effects of wood-based products in climate change mitigation. From science to policy 7. European Forest Institute, Joensuu. DOI: 10.36333/fs07.
Lim K-J, Paasela T, Harju A, Venäläinen M, Paulin L, Auvinen P, Kärkkäinen K, Teeri TH. 2016. Developmental changes in Scots pine transcriptome during heartwood formation. Plant Physiol. 172(3): 1403–1417. DOI: 10.1104/pp.16.01082.
Magel E, Einig W, Hampp R. 2000. Carbohydrates in trees. Dev. Crop Sci. 26: 317–336. DOI: 10.1016/s0378-519x(00)80016-1.
Mancuso S, Shabala S (Eds.). 2010. Waterlogging signaling and tolerance in plants (pp. 1–294). Springer, Heidelberg. DOI: 10.1007/978-3-642-10305-6.
Mörling T, Valinger E. 1999. Effects of fertilization and thinning on heartwood area, sapwood area and growth in Scots pine. Scand. J. For. Res. 14(5): 462–469. DOI: 10.1080/02827589950154168.
Oliva J, Camarero JJ, Stenlid J. 2012. Understanding the role of sapwood loss and reaction zone formation on radial growth of Norway spruce (Picea abies) trees decayed by Heterobasidion annosum s.l. For. Ecol. Manage. 274: 201–209. DOI: 10.1016/j.foreco.2012.02.026.
Onuorah EO. 2001. The effects of some manufacturing variables on the properties of particleboard. Nigerian J. Technol. 20(1): 19–40.
Peri PL, Gargaglion V, Pastur GM, Lencinas MV. 2010. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in southern Patagonia. For. Ecol. Manage. 260(2): 229–237. DOI: 10.1016/j.foreco.2010.04.027.
Pilz O. 1907. Über die allmählich Hydrolyse des Glutins. Metzger, Wittig.
Pinto I, Pereira H, Usenius A. 2004. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees 18(3): 284–294. DOI: 10.1007/s00468-003-0305-8.
Rytter L, Ingerslev M, Kilpeläinen A, Torssonen P, Lazdina D, Löf M, Madsen P, Muiste P, Stener L-G. 2016. Increased forest biomass production in the nordic and Baltic countries — a review on current and future opportunities. Silva Fenn. 50(5): 1660. DOI: 10.14214/sf.1660.
Sannikov SN. 1992. Ecology and geography of restoration of common pine. Nauka, Moscow. (in Russian).
Saranpää P, Höll W. 1987. Steryl glycosides and acylated steryl glycosides of Pinus sylvestris L. sapwood and heartwood. Trees 1(4): 215–218. DOI: 10.1007/bf01816818.
Saranpää P, Höll W. 1989. Soluble carbohydrates of Pinus sylvestris L. sapwood and heartwood. Trees 3(3): 138–143. DOI: 10.1007/bf00226648.
Saranpää P, Nyberg H. 1987. Seasonal variation of neutral lipids in Pinus sylvestris L. sapwood and heartwood. Trees 1(3): 139–144. DOI: 10.1007/bf00193556.
Sellin A. 1996. Sapwood amount in Picea abies (L.) Karst. determined by tree age and radial growth rate. Holzforschung 50(4): 291–296. DOI: 10.1515/hfsg.1996.50.4.291.
Shain L, Mackay JFG. 1973. Seasonal fluctuation in respiration of aging xylem in relation to heartwood formation in Pinus radiata. Can. J. Bot. 51(4): 737–741. DOI: 10.1139/b73-092.
Shen Y, Fukatsu E, Muraoka H, Saitoh TM, Hirano Y, Yasue K. 2020. Climate responses of ring widths and radial growth phenology of Betula ermanii, Fagus crenata and Quercus crispula in a cool temperate forest in central Japan. Trees 34: 679–692. DOI: 10.1007/s00468-019-01948-w.
Shinozaki K, Yoda K, Hozumi K, Kira T. 1964. A quantitative analysis of plant form — the pipe model theory: I. Basic analyses. Jpn. J. Ecol. 14(3): 97–105.
Smith AL, Campbell CL, Walker DB, Hanover JW. 1989. Extracts from black locust as wood preservatives: extraction of decay resistance from black locust heartwood. Holzforschung 43(5): 293–296. DOI: 10.1515/hfsg.1989.43.5.293.
Spicer R. 2005. Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA (eds.), Vascular transport in plants: 457–475. Academic Press, San Diego, CA. DOI: 10.1016/b978-012088457-5/50024-1.
Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347(6223): 1259855. DOI: 10.1126/science.1259855.
Stokes A, Berthier S. 2000. Irregular heartwood formation in Pinus pinaster Ait. is related to eccentric, radial, stem growth. For. Ecol. Manage. 135(1–3): 115–121. DOI: 10.1016/s0378-1127(00)00303-0.
Taylor AM, Gartner BL, Morrell JJ. 2002. Heartwood formation and natural durability — a review. Wood Fib. Sci. 34(4): 587–611.
Thomas SC, Martin AR. 2012. Carbon content of tree tissues: a synthesis. Forests 3(2): 332–352. DOI: 10.3390/f3020332.
Tulik M, Jura-Morawiec J, Bieniasz A, Marciszewska K. 2019. How long do wood parenchyma cells live in the stem of a Scots pine (Pinus sylvestris L.)? Studies on cell nuclei status along the radial and longitudinal stem axes. Forests 10(11): 977. DOI: 10.3390/f10110977.
Uusitalo J. 2004. Heartwood and extractive content of Scots pine in southern Finland: models to apply at harvest. Wood Fib. Sci. 36(1): 3–8. DOI: 10.1126/science.1259855.
Wang X, Wang C, Zhang Q, Quan X. 2010. Heartwood and sapwood allometry of seven Chinese temperate tree species. Ann. For. Sci. 67(4): 410. DOI: 10.1051/forest/2009131.
Wilkes J. 1991. Heartwood development and its relationship to growth in Pinus radiata. Wood Sci. Technol. 25(2): 85–90. DOI: 10.1007/bf00226808.
Yang KC, Hazenberg G, Bradfield GE, Maze JR. 1985. Vertical variation of sapwood thickness in Pinus banksiana Lamb. and Larix laricina (Du Roi) K. Koch. Can. J. For. Res. 15(5): 822–828. DOI: 10.1139/x85-133.
Yang KC, Murchison HG. 1992. Sapwood thickness in Pinus contorta var. latifolia. Can. J. For. Res. 22(12): 2004–2006. DOI: 10.1139/x92-262.
Yeung ECT, Stasolla C, Sumner MJ, Huang BQ. 2015. Plant microtechniques and protocols. Springer International Publishing, Cham.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 657 | 330 | 29 |
Full Text Views | 28 | 9 | 1 |
PDF Views & Downloads | 56 | 14 | 3 |
An essential stage in woody plant ontogeny (heartwood (HW) formation) determines tree resistance to weather conditions, wood quality (moisture, colour, resistance to biodegradation), and regulates the proportion of functionally active sapwood (SW) in the total trunk biomass. In this study, the patterns of HW formation depending on tree age and cambial age within the same tree were studied in the North-West of Russia in Scots pine in a lingonberry pine forest. It is shown that HW either repeats the trunk profile or shows a maximum proportion on average at the height of 1.5 m. Models using the square root transformation and logarithm transformation have been proposed to predict the number of annual rings in HW depending on the cambial age. Multiple regression is proposed to predict the radial width in HW. Validation of the developed models on random trees gave a good result. HW formation begins at the age of 17–18 years and continues at the rate of 0.3 rings per year for 20–30-year-old trees, 0.4–0.5 rings per year for 70–80-year-old trees, and about 0.7 rings per year for 180-year-old trees. The lifespan of xylem parenchyma cells ranged from 10–15 years in 20-year-old trees to 70 years in 180-year-old trees. At the age of the previous felling (70–80 years) the HW area in the trunk biomass is about 20%, and in 180-year-old pine forests, it increases to 50%. These data can be used to assess the role of old-growth forests in carbon sequestration.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 657 | 330 | 29 |
Full Text Views | 28 | 9 | 1 |
PDF Views & Downloads | 56 | 14 | 3 |