The quantification of the intensities of tree growth responses to the impact of geomorphic processes is a modern research trend in dendrogeomorphology. It enables a more sensitive assessment of the activity of the studied geomorphic process compared to the traditional use of growth disturbances. The advanced definitions of individual intensity classes of growth disturbances are based exclusively on macroscopic observations. This study evaluates the possibility of anatomical quantification of compression wood (CW) intensity in the case of common spruce (Picea abies (L.) Karst.) and compares it with subjective macroscopic evidence of CW with respect to stem tilting intensity. In total, 25 disturbed (tilted) individuals of P. abies occupying a landslide active during July 1997 were sampled, and 21 of them were analysed. The intensity of external disturbance (stem tilting) was compared against the macroscopic (intensity and duration) and microscopic (quantitative change of the tracheid lumen area and the cell wall proportion) parameters of compression wood suitable for practical application in common dendrogeomorphic analysis. Generally, the macroscopic indices of CW were strongly correlated with stem tilting. The intensity of the anatomical growth response was stronger in the earlywood zone than in the latewood zone. Nevertheless, their dependence on stem tilting was not detected. Results suggest that CW classification based on the quantification of anatomical changes is not possible for dendrogeomorphic purposes. Nevertheless, based on the obtained results, the present study suggests preferring the most intensively tilted trees during future dendrogeomorphic research to obtain the most intensive macroscopic and subjective observable anatomical evidence for studying compression wood.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alestalo J. 1971. Dendrochronological interpretation of geomorphic processes. Fennia 105: 1–139.
Arbellay E, Stoffel M, Bollschweiler M. 2010. Wood anatomical analysis of Alnus incana and Betula pendula injured by a debris-flow event. Tree Physiol. 30(10): 1290–1298. DOI: 10.1093/treephys/tpq065.
Arbellay E, Fonti P, Stoffel M. 2012. Duration and extension of anatomical changes in wood structure after cambial injury. J. Exp. Bot. 63(8): 3271–3277. DOI: 10.1093/jxb/ers050.
Ballesteros JA, Stoffel M, Bodoque J, Bollschweiler M, Hitz O, Díez-Herrero A. 2010a. Changes in wood anatomy in tree rings of Pinus pinaster Ait. following wounding by flash floods. Tree-Ring Res. 66: 93–103. DOI: 10.3959/2009-4.1.
Ballesteros JA, Stoffel M, Bollschweiler M, Bodoque J, Díez-Herrero A. 2010b. Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiol. 30: 773–781. DOI: 10.1093/treephys/tpq031.
Bamber RK. 2001. A general theory for the origin of growth stresses in reaction wood: how trees stay upright. IAWA J. 22: 205–212. DOI: 10.1163/22941932-90000279.
Björklund J, Seftigen K, Schweingruber FH, Fonti P, von Arx G, Bryukhanova MV, Cuny HE, Carrer M, Castagneri D, Frank DC. 2017. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in northern Hemisphere conifers. New Phytol. 216: 728–740. DOI: 10.1111/nph.14639.
Bollschweiler M, Stoffel M. 2010. Tree rings and debris flows: recent developments, future directions. Progr. Phys. Geogr. 34(5): 625–645. DOI: 10.1177/0309133310370283.
Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K. 2008. Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiol. 28(2): 255–263. DOI: 10.1093/treephys/28.2.255.
Bräker OU. 2002. Measuring and data processing in tree-ring research — a methodological introduction. Dendrochronologia (Verona) 20(1–2): 203–216. DOI: 10.1078/1125-7865-00017.
Butler DR, Malanson GP, Oelfke JG. 1987. Tree-ring analysis and natural hazard chronologies: minimum sample sizes and index values. Prof. Geogr. 39(1). DOI: 10.1111/j.0033-0124.1987.00041.x.
Chalupová O, Šilhán K, Kapustová V, Chalupa V. 2020. Spatiotemporal distribution of growth releases and suppressions along a landslide body. Dendrochronologia (Verona) 60: 125676. DOI: 10.1016/j.dendro.2020.125676.
Chiroiu P, Stoffel M, Onaca A, Urdea P. 2015. Testing dendrogeomorphic approaches and thresholds to reconstruct snow avalanche activity in the Făgăraş mountains (Romanian Carpathians). Quatern. Geochronol. 27: 1–10. DOI: 10.1016/j.quageo.2014.11.001.
Cook ER, Kairiukstis LA. 1990. Methods of dendrochronology, 1st Edn. Kluwer Academic Publishers, Dordrecht.
Donaldson LA, Singh AP, Yoshinaga A, Takabe K. 1999. Lignin distribution in mild compression wood of Pinus radiata. Can. J. Bot. 77: 41–50. DOI: 10.1139/b98-190.
Donaldson LA, Grace JC, Downes G. 2004. Within tree variation in anatomical properties of compression wood in radiata pine. IAWA J. 25: 253–271. DOI: 10.1163/22941932-90000364.
Fabiánová A, Chalupa V, Šilhán K. 2021. Dendrogeomorphic dating vs. low-magnitude landsliding. Quatern. Geochronol. 62: 101150. DOI: 10.1016/j.quageo.2021.101150.
Fisher JB, Marler TE. 2006. Eccentric growth but no compression wood in a horizontal stem of Cycas micronesica (Cycadales). IAWA J. 27: 377–382. DOI: 10.1163/22941932-90000160.
Gärtner H. 2007. Tree roots — methodological review and new development in dating and quantifying erosive processes. Geomorphology 86(3–4): 243–251. DOI: 10.1016/j.geomorph.2006.09.001.
Gärtner H, Lucchinetti S, Schweingruber FH. 2014. New perspectives for wood anatomical analysis in dendrosciences: the GSL1-microtome. Dendrochronologia (Verona) 32(1): 47–51. DOI: 10.1016/j.dendro.2013.07.002.
Heinrich I, Gärtner H. 2008. Variations in tension wood of two broad-leaved tree species in response to different mechanical treatments: implications for dendrochronology and mass movement studies. Int. J. Plant Sci. 169: 928–936. DOI: 10.1086/589695.
Heinrich I, Gärtner H, Monbaron M. 2007. Tension wood in Fagus sylvatica and Alnus glutinosa after simulated mass movement events. IAWA J. 28: 39–48.
Holmes R. 1994. Dendrochronology program library — user manual. Available from the author.
Janecka K, Kaczka R, Gärtner H, Harvey JE, Treydte K. 2020. Compression wood has a minor effect on the climate signal in tree-ring stable isotope records of montane Norway spruce. Tree Physiol. 40: 1014–1028.
Kirchner K, Krejčí O. 1998. Slope movements in the flysch Carpathians of eastern Moravia (Vsetin district), triggered by extreme rainfalls in 1997. Morav. Geograph. Rep. 6: 43–52.
Kogelnig-Mayer B, Stoffel M, Schneuwly-Bollschweiler M, Hübl J, Rudolf-Miklau F. 2011. Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites influenced by debris flows and frequent snow avalanche activity. Arctic Antarctic Alpine Res. 43(4): 649–658. DOI: 10.1657/1938-4246-43.4.649.
Krejčí O, Baroň I, Bíl M, Hubatka F, Jurová Z, Kirchner K. 2002. Slope movements in the flysch Carpathians of eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys. Chem. Earth 27(36): 1567–1576. DOI: 10.1016/S1474-7065(02)00178-X.
Lopez Saez J, Corona C, Stoffel M, Astrade L, Berger F, Malet JP. 2012. Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: the bois noir landslide, southeast French Alps. Landslides 9(2): 189–203. DOI: 10.1007/s10346-011-0284-6.
Low A. 1964. A study of compression wood in Scots pine (Pinus sylvestris L.). Forestry 37: 179–201.
Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, et al.1983. Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny. Ústřední Ústav Geologický, Praha.
Nedzved A, Mitrović A, Savić A, Mutavdžić D, Simonović Radosavljević J, Boddanović Pristov J, Steinbach G, Garab G, Starovoytov V, Radotić K. 2018. Automatic image processing morphometric method for the analysis of tracheid double wall thickness tested on juvenile Picea omorika trees exposed to static bending. Trees 32: 1347–1356. DOI: 10.1007/s00468-018-1716-x.
Pánek T, Hradecký J, Minár J, Šilhán K. 2010. Recurrent landslides predisposed by fault-induced weathering of flysch in the western Carpathians. Eng. Geol. Spec. Publ. 23: 183–199. DOI: 10.1144/EGSP23.11.
Pillow MY. 1941. A new method of detecting compression wood. J. For. 39: 385–387.
Ruiz-Villanueva V, Díez-Herrero A, Stoffel M, Bollschweiler M, Bodoque JM, Ballesteros JA. 2010. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (central Spain). Geomorphology 118(3–4): 383–392. DOI: 10.1016/j.geomorph.2010.02.006.
Savić A, Mitrović A, Donaldson L, Simonović Radosavljević J, Bogdanović Pristov J, Steinbach G, Garab G, Radotić K. 2016. Fluorescence-detected linear dichroism of wood cell walls in juvenile serbian spruce: estimation of compression wood severity. Microsc. Microanal. 22: 361–367. DOI: 10.1017/S143192761600009X.
Schweingruber FH. 1978. Mikroskopische Holzanatomie. Swiss Federal Institute of Forestry Research, Birmensdorf.
Seth MK, Jain KK. 1978. Percentage of compression wood and specific gravity in blue pine (Pinus wallichiana A.B., Jackson). Wood Sci. Technol. 12: 17–24.
Shroder JF. 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quatern. Res. 9(2): 168–185. DOI: 10.1016/0033-5894(78)90065-0.
Šilhán K. 2015. Can tree tilting indicate mechanisms of slope movement? Eng. Geol. 199: 157–164. DOI: 10.1016/j.enggeo.2015.11.005.
Šilhán K. 2016. How different are the results acquired from mathematical and subjective methods in dendrogeomorphology? Insights from landslide movements. Geomorphology 253: 189–198. DOI: 10.1016/j.geomorph.2015.10.012.
Šilhán K. 2017. Evaluation of growth disturbances of Picea abies (L.) Karst. to disturbances caused by landslide movements. Geomorphology 276: 51–58. DOI: 10.1016/j.geomorph.2016.10.005.
Šilhán K. 2020a. Dendrogeomorphology of landslides: principles, results and perspectives. Landslides 17(10): 2421–2441. DOI: 10.1007/s10346-020-01397-4.
Šilhán K. 2020b. Tree ring evidence of slope movements preceding catastrophic landslides. Landslides 17(3): 615–626. DOI: 10.1007/s10346-019-01300-w.
Šilhán K. 2021a. Dendrogeomorphology of different landslide types: a review. Forests 12(3): 1–19. DOI: 10.3390/f12030261.
Šilhán K. 2021b. The age-dependent sensitivity of Picea abies (L.) H. Karst. to landslide movements. Sci. Total Environ.: 776. DOI: 10.1016/j.scitotenv.2021.145933.
Šilhán K. 2021c. The spatio-temporal reconstruction of spoil heap landslide movements using anatomical tree growth responses. Eng. Geol. 281: 105988. DOI: 10.1016/j.enggeo.2020.105988.
Šilhán K, Stoffel M. 2015. Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides. Geomorphology 236: 34–43. DOI: 10.1016/j.geomorph.2015.02.003.
Šilhán K, Klimeš J, Tichavský R. 2019a. The sensitivity of dendrogeomorphic approaches to assessing landslide movements. Geomorphology 347: 106869. DOI: 10.1016/j.geomorph.2019.106869.
Šilhán K, Tichavský R, Fabiánová A, Chalupa V, Chalupová O, Škarpich V, Tolasz R. 2019b. Understanding complex slope deformation through tree-ring analyses. Sci. Total Environ. 665: 1083–1094. DOI: 10.1016/j.scitotenv.2019.02.195.
Stoffel M. 2005. Assessing the vertical distribution and visibility of rockfall scars in trees. Schweiz. Z. Forstw. 156(6): 195–199. DOI: 10.3188/szf.2005.0195.
Stoffel M. 2008. Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia 26(1): 53–60. DOI: 10.1016/j.dendro.2007.06.002.
Stoffel M, Bollschweiler M. 2008. Tree-ring analysis in natural hazards research — an overview. Nat. Hazard. Earth Syst. Sci. 8(2): 187–202. DOI: 10.5194/nhess-8-187-2008.
Stoffel M, Corona C. 2014. Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Res. 70(1): 3–20. DOI: 10.3959/1536-1098-70.1.3.
Stoffel M, Perret S. 2006. Reconstructing past rockfall activity with tree rings: some methodological considerations. Dendrochronologia 24(1): 1–15. DOI: 10.1016/j.dendro.2006.04.001.
Stoffel M, Schneuwly D, Bollschweiler M, Lièvre I, Delaloye R, Myint M, Monbaron M. 2005. Analyzing rockfall activity (1600-2002) in a protection forest — a case study using dendrogeomorphology. Geomorphology 68(3–4): 224–241. DOI: 10.1016/j.geomorph.2004.11.017.
Stoffel M, Butler DR, Corona C. 2013. Mass movements and tree rings: a guide to dendrogeomorphic field sampling and dating. Geomorphology 200: 106–120. DOI: 10.1016/j.geomorph.2012.12.017.
Strunk H. 1997. Dating of geomorphic processes using dendrogeomorphological methods. Catena 31: 137–151.
Tolasz R, Míková T, Valeriánová A, Voženílek V. 2007. Climate atlas of Czechia. Czech Hydrometeorological Institute, Prague.
V.I.A.S. 2005. Vienna Institute of Archaeological Science, timetable. Installation and instruction manual. Version 2.1. Vienna Institute of Archaeological Science, Vienna.
Voiculescu M, Onaca A. 2014. Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi mountains Romanian Carpathians. Cold Regions Sci. Technol. 104–105: 63–75. DOI: 10.1016/j.coldregions.2014.04.005.
Wardrop AB, Dadswell HE. 1950. The nature of reaction wood. II. The cell wall organisation of compression wood tracheids. Austr. J. Sci. Res. B 3: 1–13.
Westing AH. 1965. Formation and function of compression wood in gymnosperms II. Bot. Rev. 34: 51–78.
Wistuba M, Malik I, Gärtner H, Kojs P, Owczarek P. 2013. Application of eccentric growth of trees as a tool for landslide analyses: the example of Picea abies Karst. in the Carpathian and Sudeten mountains (central Europe). Catena 111: 41–55. DOI: 10.1016/j.catena.2013.06.027.
Yumoto M, Ishida S, Fukuzawa K. 1983. Studies on the formation and structure of compression wood cells induced by artificial inclination in young trees of Picea glauca. IV gradation of the severity of compression wood tracheids. Resourc. Bull. Coll. Exp. For. 40: 409–454.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 394 | 171 | 15 |
Full Text Views | 138 | 2 | 0 |
PDF Views & Downloads | 256 | 8 | 0 |
The quantification of the intensities of tree growth responses to the impact of geomorphic processes is a modern research trend in dendrogeomorphology. It enables a more sensitive assessment of the activity of the studied geomorphic process compared to the traditional use of growth disturbances. The advanced definitions of individual intensity classes of growth disturbances are based exclusively on macroscopic observations. This study evaluates the possibility of anatomical quantification of compression wood (CW) intensity in the case of common spruce (Picea abies (L.) Karst.) and compares it with subjective macroscopic evidence of CW with respect to stem tilting intensity. In total, 25 disturbed (tilted) individuals of P. abies occupying a landslide active during July 1997 were sampled, and 21 of them were analysed. The intensity of external disturbance (stem tilting) was compared against the macroscopic (intensity and duration) and microscopic (quantitative change of the tracheid lumen area and the cell wall proportion) parameters of compression wood suitable for practical application in common dendrogeomorphic analysis. Generally, the macroscopic indices of CW were strongly correlated with stem tilting. The intensity of the anatomical growth response was stronger in the earlywood zone than in the latewood zone. Nevertheless, their dependence on stem tilting was not detected. Results suggest that CW classification based on the quantification of anatomical changes is not possible for dendrogeomorphic purposes. Nevertheless, based on the obtained results, the present study suggests preferring the most intensively tilted trees during future dendrogeomorphic research to obtain the most intensive macroscopic and subjective observable anatomical evidence for studying compression wood.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 394 | 171 | 15 |
Full Text Views | 138 | 2 | 0 |
PDF Views & Downloads | 256 | 8 | 0 |