Pith in woody species fulfills essential roles, from functioning as the first vascular tissue in shoots, to serving as starch storage and facilitating heartwood formation. While the spongy cells of pith may die and be reabsorbed at maturity by some species, the pith persists throughout the lifespan of conifer trees. Pith features and functions of extant conifers have been documented in contemporary studies, and pith anatomy has been described for extinct progymnosperms and coniferous ancestors through fossils. However, up to now, few studies have described the wood anatomy of pith in living conifers and covered only 24 species in four families. Here we describe the pith of 7 genera and 16 species from the previously unstudied conifer families of Araucariaceae and Podocarpaceae, based on stained and unstained cross-sections. Comparisons between pith sections of the same tree in successive years yielded insights into maturation of the conifer pith. Conservative pith characteristics were identified among genera and families. Araucariaceae pith is dissimilar on a familial level, but the genus Araucaria is unified by pith shape and heterocellularity. In contrast, all Podocarpaceae piths develop secondary cracks, and most species have irregularly shaped piths. Beyond our study of similarities and differences of pith in Araucariaceae and Podocarpaceae, a look at pith patterns in the paleobotanical record and further examples in living conifers could increase the understanding of conserved characteristics and pith evolution.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Beck CB. 1960. The identity of Archaeopteris and Callixylon. Brittonia 12(4): 351–368. DOI: 10.2307/2805124.
Beck CB, Schmid R, Rothwell GW. 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev. 48(4): 691–815. DOI: 10.1007/BF02860874.
Berlin OG, Miller MJ. 1980. Euparal as a permanent mounting medium for helminth eggs and proglottids. J. Clin. Microbiol. 12(5): 700–703. DOI: 10.1128/jcm.12.5.700-703.1980.
Brown FBH. 1919. The preparation and treatment of woods for microscopic study. Bull. Torrey Bot. Club 46(4): 127–150. DOI: 10.2307/2479494.
Burrows GE, Meagher PF, Heady RD. 2007. An anatomical assessment of branch abscission and branch-base hydraulic architecture in the endangered Wollemia nobilis. Ann. Bot. 99(4): 609–623. DOI: 10.1093/aob/mcm003.
Carlquist S. 1992. Wood, bark, and pith anatomy of Old-World species of Ephedra and summary for the genus. Aliso 13(2): 255–295. DOI: 10.5642/aliso.19921302.02.
Cornet L, Gerrienne P, Meyer-Berthaud B, Prestianni C. 2012. A Middle Devonian Callixylon (Archaeopteridales) from Ronquières, Belgium. Rev. Palaeobot. Palynol. 183: 1–8. DOI: 10.1016/j.revpalbo.2012.07.004.
Crisafulli A, Herbst R. 2011. La flora Triásica del Grupo El Tranquilo, Provincia de Santa Cruz (Patagonia): Leños fósiles. Ameghiniana 48: 78–102.
Crivellaro A, Schweingruber FH. 2013. Atlas of Wood, Bark and Pith Anatomy of Eastern Mediterranean Trees and Shrubs: With a Special Focus on Cyprus. Springer, Berlin.
Decombeix AL, Meyer-Berthaud B, Rowe N, Galtier J. 2005. Diversity of large woody lignophytes preceding the extinction of Archaeopteris: new data from the middle Tournaisian of Thuringia (Germany). Rev. Palaeobot. Palynol. 137(1): 69–82. DOI: 10.1016/j.revpalbo.2005.08.006.
Doyle MH, Doyle J. 1948. Pith structure in conifers. 1. Taxodiaceae. Proc. Roy. Irish Acad. B: Biol. Geol. Chem. Sci. 52: 15–39.
Eisner NJ, Gilman EF, Grabosky JC. 2002. Branch morphology impacts compartmentalization of pruning wounds. J. Arboricult. 28(2): 99–105.
Falcon-Lang HJ, Kurzawe F, Lucas SG. 2014. Coniferopsid tree trunks preserved in sabkha facies in the Permian (Sakmarian) Community Pit Formation in south-central New Mexico, U.S.A.: Systematics and palaeoecology. Rev. Palaeobot. Palynol. 200: 138–160. DOI: 10.1016/j.revpalbo.2013.09.004.
Faria RS, Ricardi-Branco F, Rohn R, Fernandes MA, Christiano-De-Souza I. 2018. Permian woods with preserved primary structures from the southeast of Brazil (Irati Formation, Paraná basin). Palaeobiodivers. Palaeoenviron. 98(3): 385–401. DOI: 10.1007/s12549-018-0320-9.
Feng Z. 2012. Ningxiaites specialis, a new woody gymnosperm from the uppermost Permian of China. Rev. Palaeobot. Palynol. 181: 34–46. DOI: 10.1016/j.revpalbo.2012.05.005.
Feng Z, Wang J, Liu LJ, Rößler R. 2012. A novel coniferous tree trunk with septate pith from the Guadalupian (Permian) of China: Ecological and evolutionary significance. Int. J. Plant Sci. 173(7): 835–848. DOI: 10.1086/666660.
Fujii T. 2003. Application of the “NT-Cutter” knife blade to microtome sectioning of wood. IAWA J. 24(3): 241–245. DOI: 10.1163/22941932-90001593.
Galtier J, Scott AC, Powell JH, Glover BW, Waters CN, Chaloner WG. 1992. Anatomically preserved conifer-like stems from the Upper Carboniferous of England. Proc. Roy. Soc. Lond. B: Biol. Sci. 247(1320): 211–214. DOI: 10.1098/rspb.1992.0031.
Gärtner H, Schweingruber FH. 2013. Microscopic Preparation Techniques for Plant Stem Analysis. Swiss Federal Research Institute WSL, Birmensdorf.
Gärtner H, Lucchinetti S, Schweingruber FH. 2014. New perspectives for wood anatomical analysis in dendrosciences: the GSL1-microtome. Dendrochronologia 32(1): 47–51. DOI: 10.1016/j.dendro.2013.07.002.
Gnaedinger S. 2007. Podocarpaceae woods (Coniferales) from the middle Jurassic La Matilde Formation, Santa Cruz Province, Argentina. Rev. Palaeobot. Palynol. 147: 77–93.
Gnaedinger S, Herbst R. 2009. Primer registo de maderas gimnospérmicas de la Formación Roca Blanca (Jurásico Inferior), provincia de Santa Cruz, Argentina. Ameghinana 46: 59–71.
Gnaedinger SC, Zavattieri AM. 2020. Coniferous woods from the Upper Triassic of southwestern Gondwana, Tronquimalal Group, Neuquén Basin, Mendoza Province, Argentina. J. Paleontol. 94: 387–416. DOI: 10.1017/jpa.2020.1.
Hoadley RB. 1990. Identifying wood: accurate results with simple tools. Taunton Press, Newtown, CT.
Jiang Z, Wang YD, Zheng SL, Zhang W, Tian N. 2012. Occurrence of Sciadopitys-like fossil wood (Coniferales) in the Jurassic of western Liaoning and its evolutionary implications. Chin. Sci. Bull. 57(6): 569–572. DOI: 10.1007/s11434-011-4850-z.
Kraus J, Sousa H, Rezende M, Castro N, Vecchi C, Luque R. 1998. Astra blue and basic fuchsin double staining of plant materials. Biotech. Histochem. 73: 235–243. DOI: 10.3109/10520299809141117.
Kwon M, Davin LB, Lewis NG. 2001. In situ hybridization and immunolocalization of lignan reductases in woody tissues: implications for heartwood formation and other forms of vascular tissue preservation. Phytochemistry 57(6): 899–914. DOI: 10.1016/S0031-9422(01)00108-X.
Longuetaud F, Caraglio Y. 2009. Pith: a marker of primary growth in Picea abies (L.) Karst. Trees 23(2): 325–334. DOI: 10.1007/s00468-008-0280-1.
Meyer-Berthaud B, Taylor TN. 1991. A probable conifer with podocarpacean affinities from the Triassic of Antarctica. Rev. Palaeobot. Palynol. 67(3–4): 179–198. DOI: 10.1016/0034-6667(91)90041-Z.
Nakaba S, Yamagishi Y, Sano Y, Funada R. 2012. Temporally and spatially controlled death of parenchyma cells is involved in heartwood formation in pith regions of branches of Robinia pseudoacacia var. inermis. J. Wood Sci. 58(1): 69–76. DOI: 10.1007/s10086-011-1221-y.
Ohsawa T, Nishida H, Nishida M. 1995. Yezonia, a new section of Araucaria (Araucariaceae) based on permineralized vegetative and reproductive organs of A. vulgaris comb. nov. from the Upper Cretaceous of Hokkaido, Japan. J. Plant Res. 108(1): 25–39. DOI: 10.1007/BF02344302.
Panshin AJ, de Zeeuw C. 1980. Textbook of wood technology: structure, identification, uses, and properties of the commercial woods of the United States and Canada, 4th Edn. McGraw-Hill, New York, NY.
Rothwell GW. 1982. New interpretations of the earliest conifers. Rev. Palaeobot. Palynol. 37(1): 7–28. DOI: 10.1016/0034-6667(82)90035-5.
Rothwell GW, Mapes G, Hernandez-Castillo GR. 2005. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon 54(3): 733–750. DOI: 10.2307/25065430.
Santos ACS, Siegloch AM, Guerra-Sommer M, Degani-Schmidt I, Carvalho I. 2021. Agathoxylon santanensis sp. nov. from the Aptian Crato fossil Lagerstätte, Santana Formation, Araripe Basin, Brazil. J. S. Am. Earth Sci. 112: 103633. DOI: 10.1016/j.jsames.2021.103633.
Schmid R. 1982. The terminology and classification of steles: historical perspective and the outlines of a system. Bot. Rev. 48(4): 817–931. DOI: 10.1007/BF02860875.
Scofield DG. 2006. Medial pith cells per meter in twigs as a proxy for mitotic growth rate (Φ/m) in the apical meristem. Am. J. Bot. 93(12): 1740–1747. DOI: 10.3732/ajb.93.12.1740.
Shi X, Yu J, Broutin J, Pons D, Rossignol C, Bourquin S, Crasquin S, Li Q, Shu W. 2017. Turpanopitys taoshuyuanense gen. et sp. nov., a novel woody branch discovered in Early Triassic deposits of the Turpan Basin, Northwest China, and its palaeoecological and palaeoclimate implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468: 314–326. DOI: 10.1016/j.palaeo.2016.12.026.
Shimakura M. 1937. Anatomy of the wood of Taiwania. Shokubutsugaku Zasshi 51(608): 694–700. DOI: 10.15281/jplantres1887.51.694.
Tanrattana M, Meyer-Berthaud B, Decombeix A-L. 2019. Callixylon wendtii sp. nov., a new species of archaeopteridalean progymnosperm from the Late Devonian of Anti-Atlas, Morocco. Earth Environ. Sci. Trans. Roy. Soc. Edinburgh 108: 373–385. DOI: 10.1017/S1755691017000457.
Tidwell WD, Medlyn DA. 1992. Short shoots from the Upper Jurassic Morrison Formation, Utah, Wyoming, and Colorado, USA. Rev. Palaeobot. Palynol. 71(1–4): 219–238. DOI: 10.1016/0034-6667(92)90164-C.
Tomescu AMF, McQueen CR. 2022. A protoxylem pathway to evolution of pith? An hypothesis based on the Early Devonian euphyllophyte Leptocentroxyla. Ann. Bot. 130: 785–798.
Walton J. 1927. On some fossil woods of Mesozoic and Tertiary age from the Arctic zone. Ann. Bot. os-41(2): 239–252. DOI: 10.1093/oxfordjournals.aob.a090070.
Wan M, Yang W, Tang P, Liu L, Wang J. 2017. Medulloprotaxodioxylon triassicum gen. et sp. nov., a taxodiaceous conifer wood from the Norian (Triassic) of northern Bogda Mountains, northwestern China. Rev. Palaeobot. Palynol. 241: 70–84. DOI: 10.1016/j.revpalbo.2017.02.009.
Xu HH, Berry CM, Stein WE, Wang Y, Tang P, Fu Q. 2017. Unique growth strategy in the Earth’s first trees revealed in silicified fossil trunks from China. Proc. Natl. Acad. Sci. USA 114(45): 12009–12014. DOI: 10.1073/pnas.1708241114.
Yeung ECT, Stasolla C, Sumner MJ, Huang BQ (eds.). 2015. Plant Microtechniques and Protocols. Springer, Berlin.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 686 | 347 | 53 |
Full Text Views | 162 | 17 | 2 |
PDF Views & Downloads | 282 | 72 | 4 |
Pith in woody species fulfills essential roles, from functioning as the first vascular tissue in shoots, to serving as starch storage and facilitating heartwood formation. While the spongy cells of pith may die and be reabsorbed at maturity by some species, the pith persists throughout the lifespan of conifer trees. Pith features and functions of extant conifers have been documented in contemporary studies, and pith anatomy has been described for extinct progymnosperms and coniferous ancestors through fossils. However, up to now, few studies have described the wood anatomy of pith in living conifers and covered only 24 species in four families. Here we describe the pith of 7 genera and 16 species from the previously unstudied conifer families of Araucariaceae and Podocarpaceae, based on stained and unstained cross-sections. Comparisons between pith sections of the same tree in successive years yielded insights into maturation of the conifer pith. Conservative pith characteristics were identified among genera and families. Araucariaceae pith is dissimilar on a familial level, but the genus Araucaria is unified by pith shape and heterocellularity. In contrast, all Podocarpaceae piths develop secondary cracks, and most species have irregularly shaped piths. Beyond our study of similarities and differences of pith in Araucariaceae and Podocarpaceae, a look at pith patterns in the paleobotanical record and further examples in living conifers could increase the understanding of conserved characteristics and pith evolution.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 686 | 347 | 53 |
Full Text Views | 162 | 17 | 2 |
PDF Views & Downloads | 282 | 72 | 4 |