Hydraulic Conductance and Xylem Structure in Tracheid-Bearing Plants

in IAWA Journal
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

To understand water flow in tracheary elements, hydraulic conductances per unit length were measured and then compared with theoretical values calculated from xylem anatomical measurements using the Hagen -Poiseuille relation for nine species of pteridophytes, including Psilotum and eight species of ferns. In ferns the water potential gradients were essentially constant from the root tips to the distal portion of the leaf rachises, although somewhat larger gradients were found from the petiolule onward. Although tracheid number and diameter apparently controlled water flow in xylem, estimates of hydraulic conductance per unit length predicted from tracheid numbers and diameters were generally twice those actually measured from plants under steady-state conditions. A model was developed to account for this discrepancy for Pteris vittata, indicating that pit membrane resistances may contribute 70% of the total resistance to water flow in this fern. This may account for the generally observed deviation of tracheid performance from that predicted for ideal capillaries of uniform diameter.

Hydraulic Conductance and Xylem Structure in Tracheid-Bearing Plants

in IAWA Journal

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 17 17 11
Full Text Views 54 54 36
PDF Downloads 5 5 2
EPUB Downloads 0 0 0