Breathing life into trees: the physiological and biomechanical functions of lenticels

In: IAWA Journal
View More View Less
  • 1 University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor Mendel Straße 33, A-1180 Vienna, Austria
Download Citation Get Permissions

Access options

Get access to the full article by using one of the access options below.

Institutional Login

Log in with Open Athens, Shibboleth, or your institutional credentials

Login via Institution


Buy instant access (PDF download and unlimited online access):



Lenticels can be defined as pores that are the entrance of a continuous aeration system from the atmosphere via the living bark to the secondary xylem in the otherwise protective layers of the periderm. Most work on lenticels has had an anatomical focus but the structure-function relationships of lenticels still remain poorly understood. Gas exchange has been considered the main function of lenticels, analogous to the stomata in leaves. In this perspective review, we introduce novel ideas pertaining to lenticel functions beyond gas exchange. We review studies on lenticel structure, as this knowledge can give information about structure-function relationships. The number of species investigated to-date is low and we provide suggestions for staining techniques for easy categorization of lenticel types. In the follow-up sections we review and bring together new hypotheses on lenticel functioning in the daily “normal operation range”, including regulative mechanisms for gas exchange and crack prevention, the “stress operation range” comprising flooding, drought and recovery from drought and the “emergency operation range”, which includes infestation by insects and pathogens, wounding and bending. We conclude that the significance of dermal tissues and particularly of lenticels for tree survival has so far been overlooked. This review aims to establish a new research discipline called “Phytodermatology”, which will help to fill knowledge gaps regarding tree survival by linking quantitative and qualitative lenticel anatomy to tree hydraulics and biomechanics. A first step into this direction will be to screen more species from a great diversity of biomes for their lenticel structure.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 234 234 44
Full Text Views 20 20 14
PDF Views & Downloads 32 32 16