Investigating Movement within Irregularly Shaped Patches: Analysis of Mark-Release-Recapture Data Using Randomization Procedures

in Israel Journal of Ecology and Evolution
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Have Institutional Access?

Login with your institution. Any other coaching guidance?


The analysis of net-displacement data extracted from mark-release-recapture (MRR) studies is usually based on the assumption that movement follows a random walk in homogeneous space. Yet given sufficient time, within-patch movement cannot conform to this assumption, as maximum net-displacement must be limited by the patch's dimension. We thus suggest a pragmatic protocol for analyzing such MRR data: (1) Test for correlation between the time intervals between captures and displacement distance; if such a correlation is weak, displacement does not follow the rules of a random walk. (2) Test whether net-displacement observed approaches an even density distribution (null-model). (3) Estimate whether net-displacement is limited by the individual's tendency to restrict movement to sub-regions of a patch.

For this purpose we developed two randomization algorithms that generate patch-specific distance distributions given that (i) displacement distances converge to an even distribution and habitat use is homogeneous within patches, or that (ii) the spatial distribution of capture points is heterogeneous. Both methods are expanded to account for the influence of potential movement restrictions beyond those imposed by the patch's dimension. The sequential comparison of empirical distributions with distributions generated by these algorithms allows drawing conclusions about the rules underlying withinpatch movement. We exemplarily apply our protocol to an empirical MRR data set on the butterfly Maculinea teleius. The analysis indicates that habitat use within patches is heterogeneous and that Maculinea possibly establishes home ranges. Such analyses may convey important information about the biology of species and help to develop appropriate conservation strategies.

  • Hanski I. Alho J. Moilanen A. 2000. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81: 239-251.

  • Hein S. Gombert J. Hovestadt T. Poethke H. J. 2003. Movement patterns of the bush cricket Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecological Entomology 28: 432-438.

  • Armsworth P. R. Roughgarden J. E. 2005. The impact of directed versus random movement on population dynamics and biodiversity patterns. American Naturalist 165: 449-465.

  • Auckland J. N. Debinski D. M. Clark W. R. 2004. Survival movement and resource use of the butterfly Parnassius clodius.Ecological Entomology 29: 139-149.

  • Baguette M. Mennechez G. 2004. Resource and habitat patches landscape ecology and metapopulation biology: a consensual viewpoint. Oikos 106: 399-403.

  • Baguette M. Petit S. Queva F. 2000. Population spatial structure and migration of three butterfly species within the same habitat network: consequences for conservation. Journal of Applied Ecology 37: 100-108.

  • Bailey R.-I. Lineham M.-E. Thomas C.-D. Butlin R.-K. 2003. Measuring dispersal and detecting departures from a random walk model in a grasshopper hybrid zone. Ecological Entomology 28: 129-138.

  • Barton B. J. Bach C. E. 2005. Habitat use by the federally endangered Mitchell's satyr butterfly (Neonympha mitchellii mitchellii) in a Michigan prairie fen. American Midland Naturalist 153: 41-51.

  • Beissinger S. R. McCullough D. R. eds. 2002. Population viability analysis. University of Chicago Press Chicago 576 pp.

  • Bender D. J. Fahrig L. 2005. Matrix structure obscures the relationship between interpatch movement and patch size and isolation. Ecology 86: 1023-1033.

  • Blackwell P. G. 1997. Random diffusion models for animal movement. Ecological Modelling 100: 87-102.

  • Cappuccino N. Kareiva P. 1985. Coping with a capricious environment—a population study of a rare Pierid butterfly. Ecology 66: 152-161.

  • Conradt L. Roper T. J. 2006. Nonrandom movement behavior at habitat boundaries in two butterfly species: implications for dispersal. Ecology 87: 125-132.

  • Conradt L. Zollner P.-A. Roper T.-J. Frank K. Thomas C.-D. 2003. Foray search: an effective systematic dispersal strategy in fragmented landscapes. American Naturalist 161: 905-915.

  • Creel S. 1998. Social organization and effective population size in carnivores. In: Caro T. ed. Behavioral ecology and conservation biology. Oxford University Press NY pp. 246-265.

  • Dennis R. L. H. 2004. Butterfly habitats broad-scale biotope affiliations and structural exploitation of vegetation at finer scales: the matrix revisited. Ecological Entomology 29: 744-752.

  • Dennis R. L. H. Sparks T. H. 2006. When is a habitat not a habitat? Dramatic resource use changes under differing weather conditions for the butterfly Plebejus argus.Biological Conservation 129: 291-301.

  • Dennis R.-L.-H. Shreeve T.-G. van-Dyck H. 2003. Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102: 417-426.

  • Fred M. S. O'Hara R. B. Brommer J. E. 2006. Consequences of the spatial configuration of resources for the distribution and dynamics of the endangered Parnassius apollo butterfly. Biological Conservation 130: 183-192.

  • Gautestad A. O. Mysterud I. 1995. The home range ghost. Oikos 74: 195-204.

  • Giuggioli L. Abramson G. Kenkre V. M. Parmenter R. R. Yates T. L. 2006. Theory of home range estimation from displacement measurements of animal populations. Journal of Theoretical Biology 240: 126-135.

  • Greene D. F. Calogeropoulus C. 2002. Measuring and modelling seed dispersal of terrestrial plants. In: Bullock J. M. Kenward R. E. Hails R. S. eds. Dispersal ecology. Blackwell Publishing Oxford pp. 3-23.

  • Grosbois V. Tavecchia G. 2003. Modeling dispersal with capture-recapture data: disentangling decisions of leaving and settlement. Ecology 84: 1225-1236.

  • Hilborn R. Mangel M. 1997. The ecological detective. Confronting models with data. Princeton University Press Princeton NJ 315 pp.

  • Jeanson R. Blanco S. Fournier R. Deneubourg J.-L. Fourcassi� V. Theraulaz G. 2003. A model of animal movements in a bounded space. Journal of Theoretical Biology 225: 443-451.

  • Kindvall O. 1999. Dispersal in a metapopulation of the bush cricket Metrioptera bicolor (Orthoptera: Tettigoniidae). Journal of Animal Ecology 68: 172-185.

  • Lindenmayer D. B. Possingham H. P. Lacy R. C. McCarthy M. A. Pope M. L. 2003. How accurate are population models? Lessons from landscape-scale tests in a fragmented system. Ecology Letters 6: 41-47.

  • Mallet J. 1986a. Dispersal and gene flow in a butterfly with home range behavior (Heliconius erato Lepidoptera Nymphalidae). Oecologia 68: 210-217.

  • Mallet J. 1986b. Gregarious roosting and home range in Heliconius butterflies. National Geographic Research 2: 198-215.

  • Mennechez G. Petit S. Schtickzelle N. Baguette M. 2004. Modelling mortality and dispersal: consequences of parameter generalisation on metapopulation dynamics. Oikos 106: 243-252.

  • Moorcroft P. R. Lewis M. A. 2006. Mechanistic home range analysis. Princeton University Press Princeton NJ 172 pp.

  • Morales J. M. Haydon D. T. Frair J. Holsinger K. E. Fryxell J. M. 2004. Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85: 2436-2445.

  • Nowicki P. Witek M. Sk�rka P. Settele J. Woyciechowski M. 2005a. Population ecology of the endangered butterflies Maculinea teleius and M. nausithous and the implications for conservation. Population Ecology 47: 193-202.

  • Nowicki P. Settele J. Thomas J. A. Woyciechowski M. 2005b. A review of population structure of Maculinea butterflies. In: Settele J. K�hn E. Thomas J. A. eds. Studies on the ecology and conservation of butterflies in Europe. 2. Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft Publishers Sofia/Moscow pp. 144-149.

  • Ovaskainen O. 2004. Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model. Ecology 85: 242-257.

  • Ovaskainen O. Cornell S. J. 2003. Biased movement at a boundary and conditional occupancy times for diffusion processes. Journal of Applied Probability 40: 557-580.

  • Ovaskainen O. Hanski I. 2004. From individual behavior to metapopulation dynamics: Unifying the patchy population and classic metapopulation models. American Naturalist 164: 364-377.

  • Pfeifer M. A. Andrick U. R. Frey W. Settele J. 2000. On the ethology and ecology of a small and isolated population of the Dusky Large Blue Butterfly Glaucopsyche (Maculinea) nausithous (Lycaenidae). Nota Lepidopterologica 23: 147-172.

  • R Development Core Team 2007. R: A language and environment for statistical computing Vers. 2.5.0. R Foundation for Statistical Computing Vienna.

  • Ries L. Debinski D. M. 2001. Butterfly responses to habitat edges in the highly fragmented prairies of Central Iowa. Journal of Animal Ecology 70: 840-852.

  • Ross J. A. Matter S. F. Roland J. 2005. Edge avoidance and movement of the butterfly Parnassius smintheus in matrix and non-matrix habitat. Landscape Ecology 20: 127-135.

  • Rowley J. J. L. Alford R. A. 2007. Movement patterns and habitat use of rainforest stream frogs in northern Queensland Australia: implications for extinction vulnerability. Wildlife Research 34: 371-378.

  • Schneider C. 2003. The influence of spatial scale on quantifying insect dispersal: an analysis of butterfly data. Ecological Entomology 28: 252-256.

  • Schneider C. Dover J. Fry G. L. A. 2003. Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecological Entomology 28: 219-227.

  • Schtickzelle N. Baguette M. 2003. Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. Journal of Animal Ecology 72: 533-545.

  • Schultz C. B. 1998. Dispersal behavior and its implication for reserve design in a rare Oregon butterfly. Conservation Biology 12: 284-292.

  • Settele J. K�hn E. Thomas J. A. eds. 2005. Species ecology along a European gradient 2: Maculinea butterflies as a Model. Pensoft Publishers Sofia/Moscow 289 pp.

  • Sutherland I. E. Hodgman G. W. 1974. Reentrant polygon clipping. Communications of the ACM 17: 32-42.

  • Thomas J. A. 1995. The ecology and conservation of Maculinea arion and other European species of large blue. In: Pullin A. S. ed. Ecology and conservation of butterflies. Chapman & Hall London pp. 180-196.

  • Turchin P. 1998. Quantitative analysis of movement. Measuring and modeling population redistribution in animals and plants. Sinauer Associates Sunderland MA.

  • Van Dyck H. Baguette M. 2005. Dispersal behaviour in fragmented landscapes: Routine or special movements? Basic and Applied Ecology 6: 535-545.

  • Wilson R. J. Thomas C. D. 2002. Dispersal and the spatial dynamics of butterfly populations. In: Bullock J. M. Kenward R. E. Hails R. S. eds. Dispersal ecology. Blackwell Publishing Oxford UK pp. 257-278.

  • Wright S. 1943. Isolation by distance. Genetics 28: 114-138.

Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 27 23 0
Full Text Views 15 15 0
PDF Downloads 8 8 0
EPUB Downloads 0 0 0