Butterflies may serve as indicators of biodiversity trends, but for this purpose reliable methods of monitoring their distribution and abundance are essential. We discuss advantages and disadvantages of the currently used methods and suggest potential refinements, based on methodological advances achieved in other organisms. While assessing butterfly distribution, it is vital to account for imperfect species detection at investigated sites. This can be achieved through conducting repeated presence-absence surveys within a single season, and analyzing data with statistical models that estimate detection probability and site occupancy by a species. Transect counts, predominantly used for assessing butterfly abundance in monitoring programs, are cost-effective and easy to implement, but less reliable than mark-release-recapture sampling frequently applied for the same purpose in research studies. Deficiencies of transect counts stem from the fact that they do not account for individual detection probability and temporal fragmentation of butterfly populations, i.e., the situation in which just a small fraction of individuals belonging to a single generation is present on any day of a season. Consequently, transect counts can only yield relative abundance indices, which presumably correlate well with daily butterfly numbers, but not necessarily with their seasonal population sizes. Possible refinements to transect counts that would allow the estimation of individual detection probability include double observer or double zone approaches. In contrast, finding an effective way to estimate longevity (a measure of temporal fragmentation) with transect counts seems impossible. Instead, efforts should be made to evaluate how variation in longevity affects transect-count results.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amstrup, S. C., McDonald, T. R., Manly, B. F. J., eds. 2005. Handbook of capture-recapture analysis. Princeton University Press, Princeton, NJ.
Arnason, A. N., Schwarz, C. J. 1999. Using POPAN-5 to analyse banding data. Bird Study 46 (Suppl.): 157-168.
Baguette, M. 2004. The classical metapopulation theory and the real, natural world: a critical appraisal. Basic and Applied Ecology 5: 213-224.
Balmford, A., Bennun, L., Ten Brink, B., Cooper, D., C�t�, I. M., Crane, P., Dobson, A. P., Dudley, N., Dutton, I., Green, R. E., Gregory, R. D., Harrison, J., Kennedy, E. T., Kremen, C., Leader Williams, N., Lovejoy, T. E., Mace, G., May, R. M., Mayaux, P., Morling, P., Phillips, J., Redford, K., Ricketts, T. H., Rodriguez, J. P., Sanjayan, M. A., Schei, P. J., Van Jaarsveld, A. S., Walther, B. A. 2005a. The convention on biological diversity's 2010 target. Science 307: 212-213.
Balmford, A., Crane, P., Dobson, A. P., Green, R. E., Mace, G. 2005b. The 2010 challenge: data availability, information needs and extraterrestrial insights. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 360: 221-228.
Blair, R. B. 1999. Birds and butterflies along an urban gradient: surrogate taxa for assessing biodiversity? Ecological Applications 9: 164-170.
Blair, R. B., Launer, A. E. 1997. Butterfly diversity and human land use: species assemblages along an urban gradient. Biological Conservation 80: 113-125.
Bookhout, T., ed. 1994. Research and managements techniques for wildlife and habitats. The Wildlife Society, Bethesda, Maryland, USA.
Brakefield, P. M. 1982. Ecological studies on the butterfly Maniola jurtina in Britain. II. Population dynamics: the present position. Journal of Animal Ecology 51: 727-738.
Brown, J. A., Boyce, M. S. 1998. Line transect sampling of Karner blue butterflies (Lycaeides melissa samuelis). Environmental and Ecological Statistics 5: 81-91.
Brussard, P. F. 1970. Field techniques for investigations of population structure in a "ubiquitous" butterfly. Journal of the Lepidopterists' Society 25: 22-29.
Burnham, K. P., Anderson, D. R., Laake, J. L. 1980. Estimation of density from line transect sampling of biological populations. Wildlife Monographs 72: 1-202.
Casula, P., Nichols, J. D. 2003. Temporal variability of local abundance, sex ratio and activity in the Sardinian chalk hill blue butterfly. Oecologia 136: 374-382.
Caughley, G., Grice, D. 1982. A correction factor for counting emus from the air and its application to counts in Western Australia. Australian Wildlife Research 9: 253-259.
Cochran, G. A. 1977. Sampling techniques. John Wiley and Sons, New York.
Collier, N., Mackay, D. A., Benkendorff, K., Austin, A. D., Carthew, S. M. 2006. Butterfly communities in South Australian urban reserves: estimating abundance and diversity using the Pollard walk. Austral Ecology 31: 282-290.
Courtney, S. P., Duggan, A. E. 1983. The population biology of the orange-tip butterfly Anthocharis cardamines in Britain. Ecological Entomology 8: 271-281.
Crone, E. E., Schultz, C. B. 2003. Minimum patch size for population persistence in an endangered Oregon butterfly. In: Boggs, C., Watt, W., Ehrlich, P., eds. Ecology and evolution taking flight: butterflies as model study systems. University of Chicago Press, Chicago, pp. 561-576.
de Heer, M., Kapos, V., ten Brink, B. J. E. 2005. Biodiversity trends in Europe: development and testing of a species trend indicator for evaluating progress towards the 2010 target. Philosophical Transactions of the Royal Society B-Biological Sciences 360: 297-308.
Dobson, A. 2005. Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals. Philosophical Transactions of the Royal Society B-Biological Sciences 360: 229-241.
Dorazio, R. M., Royle, J. A., Soderstrom, B., Glimskar, A. 2006. Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87: 842-854.
Duffey, E. 1968. Ecological studies on the large copper Lycaena dispar (Haw.) batavus (Obth.) at Woodwalton Fen National Nature Reserve, Huntingdonshire. Journal of Applied Ecology 5: 69-96.
Ehrlich, P. R., Davidson, S. E. 1960. Techniques for capture-recapture studies of Lepidoptera populations. Journal of the Lepidopterists' Society 14: 227-229.
Ellis, R., Waterton, C. 2004. Volunteers and citizenship: environmental citizenship in the making: the participation of volunteer naturalists in UK biological recording and biodiversity policy. Science and Public Policy 3: 95-105.
Elmes, G. W., Clarke, R. T., Thomas, J. A., Hochberg, M. E. 1996. Empirical tests of specific predictions made from a spatial model of the population dynamics of Maculinea rebeli, a parasitic butterfly of red ant colonies. Acta Oecologica 17: 61-80.
European Commission. 2001. A sustainable Europe for a better world: a European Union strategy for sustainable development. COM(2001)264 final, Brussels. See http://www.europa.eu.int/eur-lex/en/com/cnc/2001/com2001_0264en01.pdf
European Commission. 2005. Assessment, monitoring and reporting of conservation status—Preparing the 2001-2007 report under Article 17 of the Habitats Directive. DG Env. B2/AR D rev3, Brussels. See http://forum.europa.eu.int/Public/irc/env/monnat/library?l=/reporting_framework
Gall, L. F. 1984. The effect of capturing and marking on subsequent activity in Boloria acrocnema (Lepidoptera: Nymphalidae), with a comparison of different numerical models that estimate population size. Biological Conservation 28: 139-154.
Gall, L. F. 1985. Measuring the size of Lepidopteran populations. Journal of Research on the Lepidoptera 24: 97-116.
Greenwood, J. J. D. 1996. Basic techniques. In: Sutherland, W. J., ed. Ecological census techniques: a handbook. Cambridge University Press, Cambridge, pp. 11-110.
Gross, K., Kalendra, E. J., Hudgens, B. R., Haddad, N. M. 2007. Robustness and uncertainty in estimates of butterfly abundance from transect counts. Population Ecology 49: 191-200.
Hellmann, J. J., Weiss, S. B., McLaughlin, J. F., Boggs, C. L., Ehrlich, P. R., Launer, A. E., Murphy, D. D. 2003. Do hypotheses from short-term studies hold in the long-term? An empirical test. Ecological Entomology 28: 74-84.
Hovestadt, T., Nowicki, P. 2008. Investigating movement within irregularly shaped patches: analysis of mark-release-recapture data using novel randomization procedures. Israel Journal of Ecology and Evolution 54: 137-154, this issue.
Hughes, J. B., Daily, G. C., Ehrlich, P. R. 1998. Use of fruit bait traps for monitoring of butterflies (Lepidoptera: Nymphalidae). Revista de Biologia Tropical 46: 697-704.
Jolly, G. M. 1965. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52: 225-247.
Kemp, D. J., Zalucki, M. P. 1999. Method of handling affects postcapture encounter probabilities in Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae). Journal of the Lepidopterists' Society 53: 138-141.
Kendall, W. L. 1999. Robustness of closed capture-recapture methods to violations of the closure assumption. Ecology 80: 2517-2525.
Kendall, W. L., Pollock, K. H. 1992. The robust design in capture-recapture studies: a review and evaluation by Monte Carlo simulation. In: McCullough, D. R., Barret, R. H., eds. Wildlife 2001: populations. Elsevier, New York, pp. 31-43.
Kery, M., Plattner, M. 2007. Species richness estimation and determinants of species detectability in butterfly monitoring programs. Ecological Entomology 32: 53-61.
Kery, M., Schmid, H. 2004. Monitoring programs need to take into account imperfect species detectability. Basic and Applied Ecology 5: 65-73.
Kocher, S. D., Williams, E. H. 2000. The diversity and abundance of North American butterflies vary with habitat disturbance and geography. Journal of Biogeography 27: 785-794.
Konvicka, M., Cizek, O., Filipova, L., Fric, Z., Benes, J., Krupka, M., Zamecnik, J., Dockalova, Z. 2005. For whom the bells toll: demography of the last population of the butterfly Euphydryas maturna in the Czech Republic. Biologia 60: 551-557.
Longcore, T., Mattoni, R., Zonneveld, C., Bruggeman, J. 2003. INsect Count Analyzer: a tool to assess responses of butterflies to habitat restoration. Ecological Restoration 21: 60-61.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248-2255.
Maes, D., Vanreusel, W., Talloen, W., Van Dyck, H. 2004. Functional conservation units for the endangered Alcon Blue butterfly Maculinea alcon in Belgium (Lepidoptera:Lycaenidae). Biological Conservation 120: 229-241.
Mallet, J. L. B., Longino, J. T., Murawski, D., Murawski, A., DeGamboa, A. S. 1987. Handling effects in Heliconius: where do all the butterflies go? Journal of Animal Ecology 56: 377-386.
Mattoni, R., Longcore, T., Zonneveld, C., Novotny, V. 2001. Analysis of transect counts to monitor population size in endangered insects. The case of the El Segundo Blue Butterfly, Euphilotes Bernardino Allyni.Journal of Insect Conservation 5: 197-206.
Moilanen, A. 2002. Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96: 516-530.
New, T. R. 1991. Butterfly conservation. Oxford University Press, Oxford.
Newman, C., Buesching, C. D., Macdonald, D. W. 2003. Validating mammal monitoring methods and assessing the performance of volunteers in wildlife conservation—"Sed quis custodiet ipsos custodies?" Biological Conservation 113: 189-197.
Nichols, J. D., Williams, B. K. 2006. Monitoring for conservation. Trends in Ecology & Evolution 21: 668-673.
Nowicki, P., Bonelli, S., Barbero, F., Balletto, E. 2005a. Population dynamics in the genus Maculinea revisited: comparative study of sympatric M. alcon and M. teleius. In: Settele, J., K�hn, E., Thomas, J. A., eds. Studies on the ecology and conservation of butterflies in Europe. Vol. 2: Species ecology along a European gradient: Maculinea butterflies as a model. Pensoft Publishers, Sofia/Moscow, pp. 136-139.
Nowicki, P., Richter, A., Glinka, U., Holzschuh, A., Toelke, U., Henle, K., Woyciechowski, M., Settele, J. 2005b. Less input same output—simplified approach for population size assessment in Lepidoptera. Population Ecology 47: 203-212.
Nowicki, P., Witek, M., Sk�rka, P., Settele, J., Woyciechowski, M. 2005c. Population ecology of the endangered butterflies Maculinea teleius and M. nausithous, and its implications for conservation. Population Ecology 47: 193-202.
Otis, D. L., Burnham, K. P., White, D. C., Anderson, D. R. 1978. Statistical inference from capture data on closed animal populations. Wildlife Monographs 62: 1-135.
Thomas, L. 1996. Monitoring long-term population change: why are there so many analysis methods? Ecology 77: 49-58.
Van Strien, A. J., van de Pevert, R., Moss, D., Yates, T. J., van Swaay, C., Vos, P. 1997. The statistical power of two butterfly monitoring schemes to detect trends. Journal of Applied Ecology 34: 817-828.
van Swaay, C., van Strien, A. 2005. Using butterfly monitoring data to develop a European grassland butterfly indicator. In: K�hn, E., Feldmann, R., Thomas, J. A., Settele, J., eds. Studies on the ecology and conservation of butterflies in Europe. Vol. 1. General concepts and case studies. Pensoft Publishers, Sofia/Moscow, pp. 106-108.
van Swaay, C., Warren, M. 1999. Red Data Book of European butterflies (Rhopalocera). Nature and Environment 99. Council of Europe Publishing, Strasbourg.
van Swaay, C., Warren, M., Lois, G. 2006. Biotope use and trends of European butterflies. Journal of Insect Conservation 10: 189-209.
Warren, M. S. 1987. The ecology and conservation of the heath fritillary butterfly, Mellicta athalia. II. Adult population structure and mobility. Journal of Applied Ecology 24: 483-498.
Warren, M. S. 1992. Butterfly populations. In: Dennis, R. L. H., ed. The ecology of butterflies in Britain. Oxford University Press, Oxford, pp. 73-92.
Webb, M. R., Pullin, A. S. 2000. Egg distribution in the large copper butterfly Lycaena dispar batavus (Lepidoptera: Lycaenidae): Host plant versus habitat mediated effects. European Journal of Entomology 97: 363-367.
White, G. C., Burnham, K. P. 1999. Program MARK: Survival estimation from populations of marked animals. Bird Study 46: 120-138.
Williams, B. K., Nichols, J. D., Conroy, M. J. 2002. Analysis and management of animal populations. Academic Press, San Diego, California, USA.
Yoccoz, N. G., Nichols, J. D., Boulinier, T. 2001. Monitoring of biological diversity in space and time. Trends in Ecology & Evolution 16: 446-453.
Zonneveld, C. 1991. Estimating death rates from transect counts. Ecological Entomology 16: 115-121.
Zonneveld, C., Longcore, T., Mulder, C. 2003. Optimal schemes to detect the presence of insect species. Conservation Biology 17: 476-487.
Ovaskainen, O., Hanski, I. 2004. Metapopulation dynamics in highly fragmented landscapes. In: Hanski, I., Gaggiotti, O. E., eds. Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, San Diego, pp. 73-103.
Owen, D. F. 1975. Estimating the abundance and diversity of butterflies. Biological Conservation 8: 173-183.
Pellet, J. 2008. Seasonal variation in detectability of butterflies surveyed with Pollard walks. Journal of Insect Conservation 12: 155-162. DOI 10.1007/s10841-007-9075-8
Pollard, E. 1977. A method for assessing changes in the abundance of butterflies. Biological Conservation 12: 115-134.
Pollard, E. 1988. Temperature, rainfall and butterfly numbers. Journal of Applied Ecology 25: 819-828.
Pollard, E., Yates, T. J. 1993. Monitoring butterflies for ecology and conservation. Chapman and Hall, London.
Pollard, E., Elias, D. O., Skelton, M. J., Thomas, J. A. 1975. A method of assessing the abundance of butterflies in Monks Wood National Nature reserve in 1973. Entomologist's Gazette 26: 79-88.
Pollard, E., Hall, M. L., Bibby, T. J. 1986. Monitoring the abundance of butterflies 1976-1985. Research and Survey in Nature Conservation Series No. 2. Nature Conservancy Council, Peterborough, UK.
Pollock, K. H. 1982. A capture-recapture design robust to unequal probabilities of capture. Journal of Wildlife Management 46: 757-760.
Pollock, K. H., Kendall, W. L. 1987. Visibility bias in aerial surveys. Journal of Wildlife Management 51: 502-510.
Pollock, K. H., Nichols, J. D., Simons, T. R., Farnsworth, G. L., Bailey, L. L., Sauer, J. R. 2002. Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13: 105-119.
Roy, D. B., Rothery, P., Moss, D., Pollard, E., Thomas, J. A. 2001. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology 70: 201-217.
Royle, J. A., Nichols, J. D. 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84: 777-790.
Schtickzelle, N., Le Boulenge, E., Baguette, M. 2002. Metapopulation dynamics of the bog fritillary butterfly: demographic processes in a patchy population. Oikos 97: 349-360.
Schtickzelle, N., Choutt, J., Goffart, P., Fichefet, V., Baguette, M. 2005. Metapopulation dynamics and conservation of the marsh fritillary butterfly: population viability analysis and management options for a critically endangered species in Western Europe. Biological Conservation 126: 569-581.
Schwarz, C. J., Arnason, A. N. 1996. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52: 860-873.
Schwarz, C. J., Seber, G. A. F. 1999. Estimating animal abundance: Review III. Statistical Science 14: 427-456.
Schwarz, C. J., Stobo, W. T. 1997. Estimating temporary migration using the robust design. Biometrics 53: 178-194.
Schultz, C. B., Crone, E. E. 2001. Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82: 1879-1892.
Schultz, C. B., Dlugosch, K. M. 1999. Nectar and hostplant scarcity limit populations of an endangered Oregon butterfly. Oecologia 119: 231-238.
Seber, G. A. F. 1965. A note on the multiple census. Biometrika 52: 249-259.
Settele, J., Feldmann, R., Henle, K., Kockelke, K., Poethke, H-J. 2000. Methoden der quantitativen Erfassung von Tagfaltern. In: Settele, J., Feldmann, R., Reinhardt, R., eds. Die Tagfalter Deutschlands. Ulmer, Stuttgart, pp. 144-185.
Singer, M. C., Wedlake, P. 1981. Capture does affect probability of recapture in a butterfly species. Ecological Entomology 6: 215-216.
Swengel, A. B. 1998. Comparisons of butterfly richness and abundance measures in prairie and barrens. Biodiversity and Conservation 7: 1639-1659.
Thomas, C. D., Hanski, I. 1997. Butterfly metapopulations. In: Hanski, I., Gilpin, M. E., eds. Metapopulation biology: ecology, genetics, and evolution. Elsevier Academic Press, San Diego, pp. 359-386.
Thomas, C. D., Hanski, I., 2004. Metapopulation dynamics in changing environments: butterfly responses to habitat climate change. In: Hanski, I., Gaggiotti, O. E., eds. Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, San Diego, pp. 489-514.
Thomas, J. A. 1983. A quick method for estimating butterfly numbers during surveys. Biological Conservation 27: 195-211.
Thomas, J. A. 1994. Why small cold-blooded insects pose different conservation problems to birds in modern landscapes. Ibis 137: 112-119.
Thomas, J. A. 2005. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philosophical Transactions of the Royal Society B-Biological Sciences 360: 339-357.
Thomas, J. A., Clarke, R. T. 2004. Extinction rates and butterflies—response. Science 305: 1563-1564.
Thomas, J. A., Lewington, R. 1991. The butterflies of Britain and Ireland. Dorling Kindersley, London.
Thomas, J. A., Simcox, D. J. 1982. A quick method for estimating larval populations of Melitaea cinxia L. during surveys. Biological Conservation 22: 315-322.
Thomas, J. A., Telfer, M. G., Roy, D. B., Preston, C. D., Greenwood, J. J. D., Asher, J., Fox, R., Clarke, R. T., Lawton, J. H. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303: 1879-1881.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2035 | 340 | 22 |
Full Text Views | 117 | 19 | 0 |
PDF Views & Downloads | 139 | 30 | 0 |
Butterflies may serve as indicators of biodiversity trends, but for this purpose reliable methods of monitoring their distribution and abundance are essential. We discuss advantages and disadvantages of the currently used methods and suggest potential refinements, based on methodological advances achieved in other organisms. While assessing butterfly distribution, it is vital to account for imperfect species detection at investigated sites. This can be achieved through conducting repeated presence-absence surveys within a single season, and analyzing data with statistical models that estimate detection probability and site occupancy by a species. Transect counts, predominantly used for assessing butterfly abundance in monitoring programs, are cost-effective and easy to implement, but less reliable than mark-release-recapture sampling frequently applied for the same purpose in research studies. Deficiencies of transect counts stem from the fact that they do not account for individual detection probability and temporal fragmentation of butterfly populations, i.e., the situation in which just a small fraction of individuals belonging to a single generation is present on any day of a season. Consequently, transect counts can only yield relative abundance indices, which presumably correlate well with daily butterfly numbers, but not necessarily with their seasonal population sizes. Possible refinements to transect counts that would allow the estimation of individual detection probability include double observer or double zone approaches. In contrast, finding an effective way to estimate longevity (a measure of temporal fragmentation) with transect counts seems impossible. Instead, efforts should be made to evaluate how variation in longevity affects transect-count results.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2035 | 340 | 22 |
Full Text Views | 117 | 19 | 0 |
PDF Views & Downloads | 139 | 30 | 0 |