Fig-Frugivore Interactions Follow a Constrained Brownian Motion Model of Evolution in an Important Bird Area, West Africa

In: Israel Journal of Ecology and Evolution
View More View Less
  • 1 African Centre for DNA Barcoding, University of Johannesburg
  • 2 African Centre for DNA Barcoding, University of Johannesburg
  • 3 A.P. Leventis Ornithological Research Institute
  • 4 African Centre for DNA Barcoding, University of Johannesburg
  • 5 Department of Zoology, University of Jos

Understanding how ecosystems function is critical in order to shed light on processes that lead to species coexistence. Ficus species provide highly specialized niches for frugivores in tropical forests, but little is known about how Ficus-hugivore interactions evolve over time. Here we applied three approaches to investigate these interactions based on key parameters. We tested for a model of evolution that could explain interaction patterns, evaluated the phylogenetic signal, and assessed the evolutionary rate of niches generated by Ficus species. We showed that interactions are best explained by a Brownian motion model, indicating a random walk. However, the signal observed is lower than expected under this model, and at the same time the evolutionary rate provides evidence for niche conservatism. Such findings are incompatible with an unbounded Brownian process. We therefore propose that a random walk constrained by ecological forces towards a stabilizing selection could better explain fig-frugivore interactions in tropical forests.

  • Abouheif, E. 1999. A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1: 895-909.

  • Ackerly, D.D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Nat. Acad. Sci. USA 106: 19699-19706.

  • Bedrick, E.J., Tsai, C.L. 1994. Model selection for multivariate regression in small samples. Biometrics 50: 226-231.

  • Bleher, B., Potgieter, C.J., Johnson, D.N., Bohning-Gaese, K. 2003. The importance of figs for frugivores in a South African coastal forest. J. Trop. Ecol. 19: 375-386.

  • Blomberg, S.R, Garland, T., Ives, A.R. 2003. Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57: 717-745.

  • Borrow, N., Demey, R. 2004. Birds of Western Africa. Christopher Helm, London.

  • Burnham, K.P., Anderson, D.R. 2003. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer-Verlag, New York.

  • Butler, M.A., King, A.A. 2004. Phylogenetic comparative analysis: a modelling approach for adaptive evolution. Am. Nat. 164: 683-695.

  • Cavender-Bares, J., Kozak, K.H., Fine, P.V.A., Kembel, S.W. 2009. The merging patterns of community ecology and phylogenetic biology. Ecol. Lett. 12: 693-715.

  • Coates-Estrada, R., Estrada, A. 1986. Fruiting and frugivores at a strangling fig in the tropical rain forest of Los Tuxtlas, Mexico. J. Trop. Ecol. 2: 349-357.

  • Collinson, M.E. 1989. The fossil history of the Moraceae, Urticaceae (including Cecropiaceae), and Cannabaceae. In: Crane, P.R., Blackmore, S., eds. Evolution, systematics, and fossil history of the Hamemelidae. Clarendon, Oxford, pp. 319-339.

  • Drummond, A.J., Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.

  • Ezealor, A.U. 2001. Nigeria. In: Fishpool, L.D.C., Evans, M.I., eds. Important Bird Areas in Africa and associated islands: priority sites for conservation. Pisces Publications and BirdLife International (BirdLife Conservation Series No. 11), Newbury and Cambridge, UK.

  • Freckleton, R.P., Harvey, P.H. 2006. Detecting non-Brownian trait evolution in adaptive radiations. PLoS Biol. 4: e373.

  • Gautier-Hion, A., Duplantier, J.-M., Quris, R., Feer, F., Sourd, C., Decoux, J.-P., Dubost, G., Emmons, L., Erard, C., Hecketsweiler, P., Moungazi, A., Roussilhon, C., Thiollay, J.-M. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65: 324-337.

  • Githiru, M., Lens, L., Bennur, L. A., Ogol, C.P.K.O. 2002. Effects of site and fruit size on the composition of avian frugivore assemblages in a fragmented Afrotropical forest. Oikos 96: 320-330.

  • Hansen, T.F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51: 1341-1351.

  • Hansen, T.F., Pienaar, J., Orzack, S.H. 2008. A comparative method for studying adaptation to a randomly evolving environment. Evolution 62: 1965-1977.

  • Harvey, P.H., Pagel, M. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford, UK.

  • Herrera, C.M. 2002. Seed dispersal by vertebrates. In: Herrera, C. M., Pellmyr, O., eds. Plant-animal interactions-an evolutionary approach. Blackwell, Oxford, UK.

  • Hurvich, C.M., Tsai, C.L. 1989. Regression and time series model selection in small samples. Biometrika 76: 297-307.

  • Hutchinson, G.E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93: 145-159.

  • Jombart, T., Balloux, F., Dray, S. 2010. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26: 1907-1909.

  • Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morion, H., Ackerly, D., Blomberg, S.P., Webb, C.O. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463-1464.

  • Kinnaird, M.F., O'Brien, T.G. 2005. Fast foods of the forest: the influence of figs on primates and hornbills across Wallace's Line. In: Dew, D.L., Boubli, J.P., eds. Tropical fruits and frugivores: the search for strong interactors. Springer, Netherlands.

  • Kissling, W.D., Rahbek, C., B�hning-Gaese, K. 2007. Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. Lond. B 274: 799-808.

  • Krasnov, B.R., Poulin, R., Mouillot, D. 2011. Scale-dependence of phylogenetic signal in ecological traits of ectoparasites. Ecography 34: 114-122.

  • Lambert, F.R., Marshall, A.G. 1991. Keystone characteristics of bird-dispersed Ficus in a Malaysian lowland rainforest. J. Ecol. 79: 793-809.

  • Lord, J.M. 2004. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral. Ecol. 29: 430-436.

  • Losos, J.B. 2008. Phylogenetic niche conservatism, phylogenetic signal, and the relationships between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11: 995-1003.

  • O'Meara, B.C., Ane, C., Sanderson, M.J., Wainwright P.C. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60: 922-933.

  • Pavoine, S., Oilier, S., Pontier, D., Chessel, D. 2008. Testing for phylogenetic signal in life history variable: Abouheif's test revisited. Theor. Pop. Biol. 73: 79-91.

  • Payne, R.B. 1998. A new species of firefinch Lagonosticta from northern Nigeria and its association with the Jos Plateau indigobird Vidua maryae. Ibis 140: 368-381.

  • Poonswad, P., Chuailua, P., Plongmai, K., Nakkuntod, S. 1998. Phenology of some Ficus species and utilisation of Ficus sources in Khao Yai National Park, Thailand. In: Poonswad, P., ed. The Asian hornbills. Ecology and conservation, Biodiversity Research and Training Program, National Center for Genetic Engineering and Biotechnology Bangkok, Thailand, pp. 227-252.

  • Posada, D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256.

  • Price, P.W. 2002. Species interactions and the evolution of biodiversity. In: Herrera, C.M., Pellmyr, O., eds. Plant-animal interactions—an evolutionary approach. Blackwell, Oxford, UK.

  • Proches, S., Wilson, J.R.U., Richardson, D.M., Rejmanek, M. 2008. Searching for phylogenetic pattern in biological invasions. Global Ecol. Biogeogr. 17: 5-10.

  • Rambaut, A., Drummond, A.J. 2007. Tracer. [WWW document]. URL

  • Revell, L.J., Collar, D.C. 2009. Phylogenetic analysis of the evolutionary correlation using likelihood. Evolution 63: 1090-1100.

  • Revell, L.J., Harmon, L.J., Collar, D.C. 2008. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57: 591-601.

  • R�nsted, N., Weiblen, G.D., Cook, J.M., Salamin, N., Machado, C.A., Savolainen, V. 2005. 60 million years of co-divergence in the fig-wasp symbiosis. Proc. R. Soc. Lond. B 272: 2593-2599.

  • Schaefer, H., Hardy, O.J., Silva, L., Barraclough, T.G., Savolainen, V. 2011. Testing Darwin's naturalization hypothesis in the Azores. Ecol. Lett. 14: 389-396.

  • Schluter, D. 2000. The ecology of adaptive radiation. Oxford University Press, Oxford, UK.

  • Shanahan, M., So, S., Compton, S.G., Corlett, R. 2001. Fig-eating by vertebrate frugivores: a global review. Biol. Rev. 76: 529-572.

  • Silvertown, J., McConway, K., Gowing, D., Dodd, M., Fay, M.F., Joseph, J.A., Dolphin, K. 2006. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc. R. Soc. Lond. B 273: 39-44.

  • Sugiura, N. 1978. Further analysis of the data by Akaike's information criterion and the finite corrections. Comm. Stat. 7: 13-26.

  • Vickery, J., Jones, P.J. 2002. A new ornithological institute in Nigeria. Bull. Afr. Bird Club 9: 61-62.

  • Voigt, F.A., Bleher, B., Fietz, J., Ganzhorn, J.U., Schwab, D., Bohning-Gaese, K. 2004. A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia 141: 94-104.

  • Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Davies, T.J., Grytnes, J.A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M., Stephens, P.R. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13: 1310-1324.

  • Wong, C.S., Li, W.K. 1998. A note on the corrected Akaike information criterion for threshold autoregressive models. J. Time Ser. Analysis 19: 113-124.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 33 11 1
Full Text Views 14 6 0
PDF Downloads 9 8 0