Relationships among Leaf, Stem and Root Traits of the Dominant Shrubs from Four Vegetation Zones in Shaanxi Province, China

in Israel Journal of Ecology and Evolution
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Leaves, stems and roots as the main plant organs have specific functions and together modulate survival, growth and reproduction. The relationships between these organs are high research priority, and there have been many hypotheses about the trade-offs between them. However, the results of these hypotheses are inconsistent and confusing. In this study, we examined 15 core traits of leaves, stems and woody roots of 27 dominant shrub species and further tested the hypotheses about the relationships between these organs. Measurements were made for shrubs across 9 sites including desert, steppe, temperate forest and subtropical forest in Shaanxi Province of China. Many significant correlations of different organ traits were found, e.g. nitrogen and phosphorus content showed a significant positive correlation, either within or across organs. Also, representatives of structural traits (carbon content and dry matter content) and mineral nutrient traits (nitrogen and phosphorus content) showed significant positive correlations among the leaves, stems and roots. The results of this study supported the hypotheses that there were significant correlations between leaf and root and between stem and root. Similarly, we found that trade-off between leaf and stem-plus-root showed a significant correlation. Thus, root traits, which are difficult to measure, are coordinated with those of the leaf and stem. We conclude that the leaf component of shrubs is a good proxy for the whole-plant in studying trade-offs and it could provide a convenient way to understand the whole-plant economic spectrum by focusing on the leaf economic spectrum.

Relationships among Leaf, Stem and Root Traits of the Dominant Shrubs from Four Vegetation Zones in Shaanxi Province, China

in Israel Journal of Ecology and Evolution

Sections

References

Baraloto C. Timothy Paine C. Poorter L. Beauchene J. Bonal D. Domenach A.M. Hérault B. Patiño S. Roggy J.C. Chave J. 2010. Decoupled leaf and stem economics in rain forest trees. Ecol Lett. 13 (11): 13381347.

Chai Yongfu Xiao Liu Ming Yue Jiangchao Guo Mao wang Pengcheng Wan Xiaofei Zhang Chenguang Zhang . 2015. Plant functional traits suggest a change in novel ecological strategies for dominant species in the stages of forest succession. Oecologia180 (3): 771783.

Chapin III F.S. 1980. The mineral nutrition of wild plants. Annu Rev Ecol Syst. 11: 233260.

Chave J. Coomes D. Jansen S. Lewis S.L. Swenson N.G. Zanne A.E. 2009. Towards a worldwide wood economics spectrum. Ecol Lett. 12 (4): 351366.

Cornelissen J.H.C. Aerts R. Cerabolini B. Werger M.J.A. Heijden M.G.A.V.D. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia. 129 (4): 611619.

Cornelissen J.H.C. Lavorel S. Garnier E. Díaz S. Buchmann N. Gurvich D.E. Reich P.B. ter Steege H. Morgan H.D. van der Heijden M.G.A. Pausas J.G. Poorter H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot. 51 (4): 335380.

Cornelissen J.H.C. Quested H.M. Logtestijn R.S.P.V. Pérezharguindeguy N. Gwynnjones D. Díaz S. Callaghan T .V., Press M.C.Aerts R. 2006. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types? Oecologia. 147 (2): 315326.

Craine J.M. & Lee W.G. 2003. Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia. 134: 471478.

Craine J.M. Lee W.G. Bond W.J. Williams R.J. Johnson L.C. 2005. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology. 86: 1219.

Díaz S. Hodgson J.G. Thompson K. Cabido M. Cornelissen J.H.C. Jalili A. Montserrat-Martí G. Grime J.P. Zarrinkamar F. Asri Y. Band S.R. Basconcelo S. Castro-Díez P. Funes G. Hamzehee B. Khoshnevi M. Pérez-Harguindeguy N. Pérez-Rontomé M.C. Shirvany F.A. Vendramini F. Yazdani S. Abbas-Azimi R. Bogaard A. Boustani S. Charles M. Dehghan M. de Torres-Espuny L. Falczuk V. Guerrero-Campo J. Hynd A. Jones G. Kowsary E. Kazemi-Saeed F. Maestro-Martínez M. Romo-Díez A. Shaw S. Siavash B. Villar-Salvador P. Zak M.R. 2004. The plant traits that drive ecosystems: evidence from three continents. J Veg Sci. 15: 295304.

Díaz S. Lavorel S. de Bello F. Quetier F. Grigulis K. Robson M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA. 104: 684689.

Engelbrecht B.M. Comita L.S. Condit R. Kursar T.A. Tyree M.T. Turner B.L. Hubbell S.P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature. 447 (7140): 8082.

Fortunel C. Fine P.V. Baraloto C. 2012. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct Ecol. 26 (5): 11531161.

Freschet G.T. Cornelissen J.H.C. Logtestijn R.S.P.V. Aerts R. 2010. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol. 98 (2): 362373.

Grime J.P. Thompson K. Hunt R. Hodgson J.G. Cornelissen J.H.C. Rorison I.H. Hendry G.A.F. Ashenden T.W. Askew A.P. Band S.R. 1997. Integrated Screening Validates Primary Axes of Specialisation in Plants. Oikos. 79 (2): 259281.

Ishida A. Nakano T. Yazaki K. Matsuki S. Koike N. Lauenstein D. Shimizu M. Yamashita N. 2008. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia. 156: 193202.

Kerkhoff A.J. Fagan W.F. Elser J.J. Enquist B.J. 2006. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat. 168: E103E122.

Laughlin D.C. 2014. The intrinsic dimensionality of plant traits and its relevance to community assembly. J Ecol. 102 (1): 186193.

Liu G. Freschet G.T. Pan X. Cornelissen J.H.C. Li Y. Dong M. 2010. Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytol. 188: 543553.

Murphy J. & Riley J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27 (00): 3136.

Pérez-Harguindeguy N. Díaz S. Garnier E. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 61 (3): 167234.

Pérez-Ramos I. M. Roumet C. Cruz P. Blanchard A. Autran P. Garnier E. 2012. Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol. 100 (6): 13151327.

Pratt R. Jacobsen A. Ewers F. Davis S. 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174 (4): 787798.

Reich P.B. Walters M.B. Ellsworth D.S. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr. 62 (3): 365392.

Reich P.B. Walters M.B. Ellsworth D.S. 1997. From tropics to tundra: global convergence in plant functioning. P Natl Acad Sci USA. 94: 1373013734.

Reich P.B. Tjoelker M.G. Walters M.B. Vanderklein D.W. Bushena C. 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol. 12: 327338.

Reich P.B. Wright I.J. Cavender-Bares J. Craine J.M. Oleksyn J. Westoby M. Walters M.B. 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164 (S3): S143S164.

Reich P.B. Tjoelker M.G. Pregitzer K.S. Wright I.J. Oleksyn J. Machado J. L. 2008. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol Lett. 11 (8): 793801.

Reubens B. Poesen J. Danjon F. Geudens G. Muys B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees. 21 (4): 385402.

Suding K.N. & Goldstein L.J. 2008. Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytol. 180: 559562.

Tjoelker M.G. Craine J.M. Wedin D.A. Reich P.B. Tilman D. 2005. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167: 493508.

Tufekcioglu A. Raich J.W. Isenhart T. Schultz R.C. 1999. Fine root dynamics, coarse root biomass, root distribution, and soil respiration in a multispecies riparian buffer in Central Iowa, USA. Agroforest Syst. 44 (2–3): 163174.

Tyree M.T. & Ewers F.W. 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119: 345360.

Weiher E. van der Werf A. Thompson K. Roderick M. Garnier E. Eriksson O. 1999. Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci. 10: 609620.

Westoby M. Falster D.S. Moles A.T. Vesk P.A. Wright I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst. 33: 125159.

Withington J.M. Reich P.B. Oleksyn J. Eissenstat D.M. 2006. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol Monogr. 76: 381397.

Wright I.J. & Cannon K. 2001. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Func Ecol. 15 (3): 351359.

Wright I.J. Reich P.B. Cornelissen J.H. Falster D.S. Groom P.K. Hikosaka K. Lee W. Lusk C.H. Niinemets Ü. Oleksyn J. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecol Biogeogr. 14 (5): 411421.

Wright I.J. Reich P.B. Westoby M. Ackerly D.D. Baruch Z. Bongers F. Cavender-Bares J. Chapin T. Cornelissen J.H. Diemer M. and et al. 2004. The worldwide leaf economics spectrum. Nature. 428 (6985): 821827.

Wright I.J. Falster D.S. Melinda P. Mark W. 2006. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol Plantarum. 127 (3): 445456.

Wright I.J. Ackerly D.D. Bongers F. Harms K.E. Ibarra-Manriquez G. Martinez-Ramos M. Mazer S.J. Muller-Landau H.C. Paz H. Pitman N.C.A. Poorter L. Silman M.R. Vriesendorp C.F. Webb C.O. Westoby M. Wright S.J. 2007. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann Bot-London. 99 (5): 1003.

Zhu Z.C. 1981. The types and basic characteristics of shrubs on Qinling Mountains. Shaanxi Forest Science and Technology. 2: 4253 (In Chinese).

Figures

  • View in gallery

    Principal components analysis of leaf traits. Abbreviations for traits are given in Table 2. SLA, specific leaf area; LDMC, leaf dry mass content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LCC, leaf carbon content.

  • View in gallery

    Principal components analysis of stem traits. Abbreviations for traits are given in Table 2. SD, stem diameter; SDMC, stem dry mass content; SNC, stem nitrogen content; SPC, stem phosphorus content; SCC, stem carbon content.

  • View in gallery

    Principal components analysis of root traits. Abbreviations for traits are given in Table 2. RD, root diameter; RDMC, root dry mass content; RNC, root nitrogen content; RPC, root phosphorus content; RCC, root carbon content.

  • View in gallery

    Correlations between economics spectra, as indicated by PCA first axis score, of different plant parts.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 4 4 4
Full Text Views 3 3 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0