Phylogenetic Diversity (PD) is increasingly recognised as a useful tool for prioritising species and regions for conservation effort. Increased availability of spatial and phylogenetic data for reptiles now facilitates their inclusion in phylogenetically-informed conservation prioritisation efforts. Geckos are a highly divergent and diverse clade that comprises almost 20% of global reptile diversity. Their global distribution is coincident with numerous anthropogenic threats, making them worthy of conservation prioritisation. Here, we combine phylogenetic, spatial distribution and extinction risk data for geckos with global human encroachment data to identify both regions and species representing irreplaceable gecko diversity at risk from human pressure. We show that high levels of irreplaceable gecko diversity are restricted to regions under intense human pressure, such as India, Sri Lanka and the Caribbean. There is a lack of extinction risk data for the western regions of Angola and Namibia, and yet these regions harbour high levels of irreplaceable diversity. At the species level, geckos display more unique PD than other lizards and snakes and are of greater conservation concern under our metric. The PD represented by Data Deficient geckos is at comparable risk to that of Endangered species. Finally, estimates of potential gecko diversity loss increase by up to 300% when species lacking extinction risk data are included. Our analyses show that many evolutionarily unique gecko species are poorly known and are at an increased risk of extinction. Targeted research is needed to elucidate the conservation status of these species and identify conservation priorities.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Bland, L. M. , and Böhm, M. (2016). Overcoming data deficiency in reptiles. Biological Conservation, 204, pp. 16–22. DOI 10.1016/j.biocon.2016.05.018.
Brooks, T. M. , A. M. R. , Da Fonseca, G. A. B. , Gerlach, J. , Hoffmann, M. , Lamoreux, J. F. , … Rodrigues, A. S. . (2006). Global Biodiversity Conservation Priorities. Sciences, 313(2006), pp. 58–61. DOI 10.1126/science.1127609.
Cadotte, M. W. (2013). Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proceedings of the National Academy of Sciences, 110(22), pp. 8996–9000. DOI 10.1073/pnas.1301685110.
Ceballos, G. , Ehrlich, P. R. , Barnosky, A. D. , García, A. , Pringle, R. M. , and Palmer, T. M. (2015). Accelerated modern human – induced species losses: entering the sixth mass extinction. Sciences Advances, 1(e1400253), pp. 1–5. DOI 10.1126/sciadv.1400253.
Davis, M. , Faurby, S. , and Svenning, J.-C. (2018). Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proceedings of the National Academy of Sciences, 115(44), pp. 11262–11267. DOI 10.1073/pnas.1804906115.
Díaz, S. , Settele, J. , Brondízio, E. S. , Ngo, H. T. , Guèze, M. , Agard, J. , … (eds.). (2019a). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany.
Díaz, Sandra , Settele, J. , Brondízio, E. S. , Ngo, H. T. , Agard, J. , Arneth, A. , … Zayas, C. N. (2019b). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), pp. eaax3100. DOI 10.1126/science.aax3100.
Dirzo, R. , Young, H. S. , Galetti, M. , Ceballos, G. , Isaac, N. J. B. , and Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195).
Dutilleul, P. , Clifford, P. , Richardson, S. , and Hemon, D. (1993). Modifying the t Test for Assessing the Correlation Between Two Spatial Processes. Biometrics, 49(1), pp. 305–314. DOI 10.2307/2532625.
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), pp. 1–10. DOI 10.1016/0006-3207(92)91201-3.
Faith, D. P. (2008). Threatened species and the potential loss of phylogenetic diversity: Conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation Biology, 22(6), pp. 1461–1470. DOI 10.1111/j.1523-1739.2008.01068.x.
Forest, F. , Grenyer, R. , Rouget, M. , Davies, T. J. , Cowling, R. M. , Faith, D. P. , … Savolainen, V. (2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445(February 2007), pp. 757–760. DOI 10.1038/nature05587.
Gumbs, R. , Gray, C. L. , Böhm, M. , Hoffmann, M. , Grenyer, R. , Jetz, W. , … Rosindell, J. (2020). Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts. Nature Communications, 11(1), pp. 2616. DOI 10.1038/s41467-020-16410-6.
Gumbs, R. , Gray, C. L. , Wearn, O. R. , and Owen, N. R. (2018). Tetrapods on the EDGE: Overcoming data limitations to identify phylogenetic conservation priorities. PLOS ONE, 13(4), pp. e0194680.
IPBES . (2018). The IPBES regional assessment report on biodiversity and ecosystem services for Asia and the Pacific. Karki, M. , Senaratna Sellamuttu, S. , Okayasu, S. , and Suzuki, W. (eds). Bonn, Germany.
Isaac, N. J. B. , Redding, D. W. , Meredith, H. M. , and Safi, K. (2012). Phylogenetically-Informed Priorities for Amphibian Conservation. PLoS ONE, 7(8), pp. 1–8. DOI 10.1371/journal.pone.0043912.
Isaac, N. J. B. , Turvey, S. T. , Collen, B. , Waterman, C. , and Baillie, J. E. M. (2007). Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS ONE, 2(3), pp. e296.
IUCN . (2019). IUCN Red List of Threatened Species. Version 2019-1. Retrieved from www.iucnredlist.org.
Jetz, W. , Thomas, G. H. , Joy, J. B. , Redding, D. W. , Hartmann, K. , and Mooers, A. O. (2014). Global Distribution and Conservation of Evolutionary Distinctness in Birds. Current Biology, 24(9), pp. 919–930. DOI 10.1016/j.cub.2014.03.011.
Mace, G. M. , Gittleman, J. L. , and Purvis, A. (2003). Preserving the tree of life. Science, 300(5626), pp. 1707–1709. DOI 10.1126/science.1085510.
Mccarthy, D. P. , Donald, P. F. , Scharlemann, J. P. W. , Graeme, M. , Balmford, A. , Green, J. M. H. , … Lodge, T. (2012). abc. Science, 338(6109), pp. 946–949.
Meiri, S. , Bauer, A. M. , Allison, A. , Castro-Herrera, F. , Chirio, L. , Colli, G. , … Roll, U. (2018). Extinct, obscure or imaginary: The lizard species with the smallest ranges. Diversity and Distributions, 24(2), pp. 262–273. DOI 10.1111/ddi.12678.
Meiri, S. , and Chapple, D. G. (2016). Biases in the current knowledge of threat status in lizards, and bridging the “assessment gap.” Biological Conservation, 204(March), pp. 6–15. DOI 10.1016/j.biocon.2016.03.009.
Mooers, A. Ø. , Heard, S. B. , and Chrostowski, E. (2005). Evolutionary heritage as a metric for conservation. In Phylogeny and conservation (pp. 120–138). DOI https://doi.org/10.1017/CBO9780511614927.006.
Nunes, L. A. , Turvey, S. T. , and Rosindell, J. (2015). The price of conserving avian phylogenetic diversity: a global prioritization approach. Philos Trans R Soc Lond B Biol Sci, 370(1662), pp. 20140004. DOI 10.1098/rstb.2014.0004.
Osorio, F. , and Vallejos, R. (2018). SpatialPack: Package for analysis of spatial data (R package version 0.3, 2018 ).
Owen, N. R. , Gumbs, R. , Gray, C. L. , and Faith, D. P. (2019). Global conservation of phylogenetic diversity captures more than just functional diversity. Nature Communications, 10(1), pp. 859. DOI 10.1038/s41467-019-08600-8.
Pollock, L. J. , Thuiller, W. , and Jetz, W. (2017). Large conservation gains possible for global biodiversity facets. Nature, 546(7656), pp. 141–144. DOI 10.1038/nature22368.
R Core Team . (2019). R: A language and environment for statistical computing. Retrieved from https://www.r-project.org/.
Roll, U. , Feldman, A. , Novosolov, M. , Allison, A. , Bauer, A. M. , Bernard, R. , … Meiri, S. (2017). The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology & Evolution, 1(11), pp. 1677–1682. DOI 10.1038/s41559-017-0332-2.
Rosauer, D. F. , and Jetz, W. (2015). Phylogenetic endemism in terrestrial mammals. Global Ecology and Biogeography, 24(2), pp. 168–179. DOI 10.1111/geb.12237.
Rosauer, D. F. , Pollock, L. J. , Linke, S. , and Jetz, W. (2017). Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proceedings of the Royal Society B: Biological Sciences, 284(1865), pp. 20170627. DOI 10.1098/rspb.2017.0627.
Rosauer, D. , Laffan, S. W. , Crisp, M. D. , Donnellan, S. C. , and Cook, L. G. (2009). Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 18(19), pp. 4061–4072. DOI 10.1111/j.1365-294X.2009.04311.x.
Safi, K. , Armour-Marshall, K. , Baillie, J. E. M. , and Isaac, N. J. B. (2013). Global Patterns of Evolutionary Distinct and Globally Endangered Amphibians and Mammals. PLoS ONE, 8(5). DOI 10.1371/journal.pone.0063582.
Sanderson, E. W. , Jaiteh, M. , Levy, M. a. , Redford, K. H. , Wannebo, A. V. , and Woolmer, G. (2002). The Human Footprint and the Last of the Wild. BioScience, 52(10), pp. 891–904. DOI 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2.
Tapley, B. , Michaels, C. J. , Gumbs, R. , Böhm, M. , Luedtke, J. , Pearce-Kelly, P. , and Rowley, J. J. L. (2018). The disparity between species description and conservation assessment: A case study in taxa with high rates of species discovery. Biological Conservation, 220, pp. 209–214. DOI https://doi.org/10.1016/j.biocon.2018.01.022.
Tonini, J. F. R. , Beard, K. H. , Ferreira, R. B. , Jetz, W. , and Pyron, R. A. (2016). Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 204, pp. 23–31. DOI 10.1016/j.biocon.2016.03.039.
Uetz, P. , Freed, P. , and Hosek, J. (2019). The Reptile Database. Retrieved from http://www.reptile-database.org.
Venter, O. , Sanderson, E. W. , Magrach, A. , Allan, J. R. , Beher, J. , Jones, K. R. , … Watson, J. E. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7, pp. 12558.
Veron, S. , Penone, C. , Clergeau, P. , Costa, G. C. , Oliveira, B. F. , S??o-Pedro, V. A. , and Pavoine, S. (2016). Integrating data-deficient species in analyses of evolutionary history loss. Ecology and Evolution.
Weitzman, M. L. (1998). The Noah’s Ark Problem. Econometrica, 66(6), pp. 1279–1298. DOI 10.3982/ECTA9075.
Zheng, Y. , and Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, pp. 537–547. DOI 10.1016/j.ympev.2015.10.009.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 930 | 168 | 14 |
Full Text Views | 42 | 3 | 1 |
PDF Views & Downloads | 46 | 6 | 2 |
Phylogenetic Diversity (PD) is increasingly recognised as a useful tool for prioritising species and regions for conservation effort. Increased availability of spatial and phylogenetic data for reptiles now facilitates their inclusion in phylogenetically-informed conservation prioritisation efforts. Geckos are a highly divergent and diverse clade that comprises almost 20% of global reptile diversity. Their global distribution is coincident with numerous anthropogenic threats, making them worthy of conservation prioritisation. Here, we combine phylogenetic, spatial distribution and extinction risk data for geckos with global human encroachment data to identify both regions and species representing irreplaceable gecko diversity at risk from human pressure. We show that high levels of irreplaceable gecko diversity are restricted to regions under intense human pressure, such as India, Sri Lanka and the Caribbean. There is a lack of extinction risk data for the western regions of Angola and Namibia, and yet these regions harbour high levels of irreplaceable diversity. At the species level, geckos display more unique PD than other lizards and snakes and are of greater conservation concern under our metric. The PD represented by Data Deficient geckos is at comparable risk to that of Endangered species. Finally, estimates of potential gecko diversity loss increase by up to 300% when species lacking extinction risk data are included. Our analyses show that many evolutionarily unique gecko species are poorly known and are at an increased risk of extinction. Targeted research is needed to elucidate the conservation status of these species and identify conservation priorities.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 930 | 168 | 14 |
Full Text Views | 42 | 3 | 1 |
PDF Views & Downloads | 46 | 6 | 2 |