Geckos are a hyper-diverse, ancient, and globally distributed group. They have diverged early from other squamates and thus can be expected to differ from them along multiple ecological, life history, and biogeographic axes. I review a wide range of gecko traits, comparing them to those of other lizard taxa, to identify the unique, and unifying, attributes of geckos among lizards, based on comprehensive databases of lizard distributions and biological attributes. Few traits completely separate geckos from other lizard taxa, yet they differ to a large degree along many axes: they are more restricted to low latitudes and altitudes, are especially diverse on islands, but relatively scarce in America. They are small lizards, that lay small, fixed clutch sizes, for which they compensate only partially by laying frequently. Because they mature at relatively similar ages and have similar lifespans to other lizards, geckos produce fewer offspring over a year, and over their lifetimes, perhaps implying that they enjoy higher survival rates. While being the only large lizard clade of predominantly nocturnal lizards a large proportion of species is active by day. Gecko body temperatures and preferred temperatures are lower than those of other lizards –even when they are compared to lizards with similar activity times. Worryingly, most geckos have small ranges that often reside completely outside of protected areas – much more frequently than in other reptile and vertebrate taxa.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Adler , G. H. and Levins , R. (1994). The island syndrome in rodent populations. Quart. Rev. Biol. 69, pp. 473–490.
Arnold , E. N. 1984. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, pp. 127–169.
Arnold , E. N. and Poinar , G. (2008). A 100 million year old gecko with sophisticated adhesive toe pads, preserved in amber from Myanmar. Zootaxa, 1847, pp. 62–68.
Bar , A . and Haimovitch , G . 2018. A Field Guide to Reptiles and Amphibians of Israel. 2nd edition. Jerusalem: The Israeli Nature and Parks Authority Press. In Hebrew.
Bauer , A. M. (2013). Geckos. The animal answer guide. Baltimore: Johns Hopkins University Press.
Bauer , A. M. (2019). Gecko adhesion in space and time: a phylogenetic perspective on the scansorial success story. Int. Comp. Biol. doi:10.1093/icb/icz020.
Bauer , A. M. and Russell , A. P. (1986). Hoplodactylus delcourti n. sp. (Reptilia: Gekkonidae), the largest known gecko. New Zeal. J. Zool. 13, pp. 141–148.
Boulenger , G. A. (1885). Catalogue of the Lizards in the British Museum (Nat. Hist.) I. Geckonidae, Eublepharidae, Uroplatidae, Pygopodidae, Agamidae. London: Trustees of the British Museum.
Bouskila , A. (2020). TITLE TO BE DETERMINED. Isr. J. Ecol. Evol., this issue.
Brown , J. L. , Sillero , N. , Glaw , F. , Bora , P. , Vieites , D. R. and Vences , M. (2016). Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS ONE 11, pp. e0144076.
Camacho , A. , Recoder , R. , Teixeira , M. , Kohlsdorf , T. , Rodrigues , M. T. and Lee , M. S. Y. (2016). Overcoming phylogenetic and geographic uncertainties to test for correlates of range size evolution in gymnophthalmid lizards. Ecography 40: 764–773.
Comas , M. , Escoriza , D. and Moreno-Rueda , G. (2014). Stable isotope analysis reveals variation in trophic niche depending on altitude in an endemic alpine gecko. Bas. Appl. Ecol. 15, pp. 362–369.
Conrad , P. M. and Bradley , P. V. (2009). Coleonyx variegatus (western banded gecko). Geographic distribution. Herp. Rev. 40, pp. 112.
Crochet , P-A . and Renoult , J. P. (2008). Tarentola annularis annularis (Geoffroy de Saint-Hilaire, 1827) preying on a mammal. Herp. Not. 1, pp. 58–59.
Dayananda , B. , Gray , S. , Pike , D. and Webb , J. K. (2016). Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard. Glob. Chan. Biol. 22, pp. 2405–2414.
Daza , J. D. , Herrera , A. , Thomas , R. and Claudio , H. J. (2009). Are you what you eat? A geometric morphometric analysis of gekkotan skull shape. Biol. J. Linn. Soc. 97, pp. 677–707.
Daza , J. D. , Bauer , A.M. and Snively , E. (2013). Gobekko cretacicus (Reptilia: Squamata) and its bearing on the interpretation of gekkotan affinities. Zool. J. Linn. Soc., 167, pp. 430–448.
Daza , J. D. , Bauer , A. M. and Snively , E. D. (2014). On the fossil record of the Gekkota. Anat. Rec. 297, pp. 433–462.
Daza , J. D. , Gamble , T. , Abdala , V. and Bauer , A. M. (2017). Cool geckos: does plesiomorphy explain morphological similarities between geckos from the Southern Cone?. J. Herpetol., 51, pp. 330–342.
Doody , J. S. , Freedberg , S. and Keogh , J. S. (2009). Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Quart. Rev. Biol., 84, pp. 229–252.
Doughty , P. (1997). The effects of “fixed” clutch sizes on lizard life-histories: reproduction in the Australian velvet gecko, Oedura lesueurii. Herpetol. J. , 31, pp. 266–272.
Duellman , W. E. and Pianka , E. R. (1990). Biogeography of nocturnal insectivores: historical events and ecological filters. Ann. Rev. Ecol. Syst., 21, pp. 57–68.
Espinoza , R. E. , Wiens , J. J. and Tracy , C. R. (2004). Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. PNAS 101, pp. 16819–16824.
Feldman , A. , Sabath , N. , Pyron , R. A. , Mayrose , I. and Meiri , S. (2016). Body-sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeog. 25, pp. 187–197.
Gamble , T. , Greenbaum , E. , Jackman , T. R. , Russell , A. P. and Bauer , A. M. (2012). Repeated origin and loss of adhesive toepads in geckos. PLoS ONE 7, pp. e39429.
Gamble , T. , Greenbaum , E. , Jackman , T. R. and Bauer , A. M. (2015). Into the light: diurnality has evolved multiple times in geckos. Biol. J. Linn. Soc. 115, pp. 896–910.
Gamble , T. , Greenbaum , E. , Jackman , T. R. , Russell , A.P. and Bauer , A. M. (2017). Repeated evolution of digital adhesion in geckos: a reply to Harrington and Reeder. J. Evol. Biol., 30, pp. 1429–1436.
Giulia , S. , Luca , L. and Leonardo , V. (2019). Lizards and the city: A community study of Lacertidae and Gekkonidae from an archaeological park in Rome. Zool. Anz. 283, pp. 20–26.
Godoy , M. and Pincheira-Donoso , D. (2009). Multi-maternal nesting behaviour and a potential adaptive signal for its evolution in the Argentinean geckonid lizard Homonota borelli. J. Biol. Res. 12, pp. 221–224.
Gordon , C. E. , Dickman , C. R. and Thompson , M. B. (2010). Partitioning of temporal activity among desert lizards in relation to prey availability and temperature. Aust. Ecol. 35, pp. 41–52.
Hagey , T. J. , Uyeda , J. C. , Crandell , K. E. , Cheney , J. A. , Autumn , K. and Harmon , L. J. (2017). Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards. Evolution 71, pp. 2344–2358.
Hall , M. I. (2008). Comparative analysis of the size and shape of the lizard eye. Zoology, 111, pp. 62–75.
Hare , K. M. , Chapple , D. G. , Towns , D. R. and van Winkel , D. (2016). The ecology of New Zealand’s lizards. In Chapple D. G. , Ed., New Zealand Lizards. New York: Springer, pp. 133–168.
Harrington , S. and Reeder , T. W. (2017). Rate heterogeneity across Squamata, misleading ancestral state reconstruction and the importance of proper null model specification. J. Evol. Biol. 30, pp. 313–325.
Harrington , S. M. , Leavitt , D. H. and Reeder , T. W. (2016). Squamate phylogenetics, molecular branch lengths, and molecular apomorphies: a response to McMahan et al. Copeia, 104, pp. 702–707.
Hecht , M. K. (1951). Fossil lizards of the West Indian genus Aristelliger (Gekkonidae). Am. Mus. Nov. 1538, pp. 1–33.
Henkel , F-W . and Schmidt , W . (1995). Geckoes. Biology, Husbandry, and Reproduction. Malabar: Kreiger,.
IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1. Second edition. Gland, Switzerland and Cambridge, UK: IUCN.
IUCN, 2019. The IUCN Red List of Threatened Species. http://www.iucnredlist.org. Downloaded on 10 July 2019.
Khan , M. S. and Tasnim , R. (1990). A new gecko of the genus Tenuidactylus from northeastern Punjab, Pakistan, and southwestern Azad Kashmir. Herpetologica 46, pp. 142–148.
King , G. M. (1996). Reptiles and Herbivory. London: Chapman and Hall.
Kohler , G. (2005). Incubation of Reptile Eggs. Malabar: Krieger Publishing Company.
Kratochvil , L. and Kubicka , L. (2007). Why reduce clutch size to one or two eggs? Reproductive allometries reveal different evolutionary causes of invariant clutch size in lizards. Funct. Ecol. 21, pp. 171–177.
Kronfeld-Schor , N. and Dayan , T. (2003). Partitioning of time as an ecological resource. Annual Review of Ecol. Evol. Syst. 34, pp. 153–181.
Meiri , S. (2016). Small, rare and trendy: traits and biogeography of lizards described in the 21st century. J. Zool. 299, pp. 251–261.
Meiri , S. (2018). Traits of lizards of the world – variation around a successful evolutionary design. Glob. Ecol. Biogeog. 27, pp. 1168–1172.
Meiri , S. , Avila , L. , Bauer , A. M. , Chapple , D. G. , Das , I. , Doan , T. M. , Doughty , P. , Ellis , R ., Grismer , L.L. , Kraus , K. , Morando , M. , Oliver , P. , Pincheira-Donoso , D. , Ribeiro-Junior , M. A. , Shea , G. , and Roll , U. (submitted). The global diversity and distribution of lizard clutch sizes. Global Ecol. Biogeogr.
Meiri , S. , Bauer , A. M. , Chirio , L. , Colli , G. R. , Das , I. , Doan , T. M. , Feldman , A. , Herrera , F-C ., Novosolov , M. , Pafilis , P. , Pincheira-Donoso , D. , Powney , G. , Torres-Carvajal , O. , Uetz , P. and Van Damme , R. (2013). Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob. Ecol. Biogeog. 22, pp. 834–845.
Meiri, S. and Chapple, D. G. 2016. Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’. Biol. Conserv. 204: 6-15.
Meiri , S. , Feldman , A. and Kratochvil , L. (2015). Squamate hatchling size and the evolutionary causes of negative offspring size allometry. J. Evol. Biol. 28, pp. 438–446.
Meiri , S. , Bauer , A. M. , Allison , A. , Castro-Herrera , F. , Chirio , L. , Colli , G. R. , Das , I. , Doan , T. M. , Glaw , F. , Grismer , L. L. , Hoogmoed , M. , Kraus , F. , LeBreton , M. , Meirte , D. , Nagy , Z. T. , Nogueira , C. C. , Oliver , P. , Pauwels , O. S. G. , Pincheira-Donoso , D. , Shea , G. , Sindaco , R. , Tallowin , O. J. S. , Torres-Carvajal , O. , Trape , J-F ., Uetz , P. , Wagner , P. , Wang , Y. , Ziegler , T. and Roll , U. (2018). Extinct, obscure or imaginary: the lizard species with the smallest ranges. Div. & Dist. 24, pp. 262–273.
Moreno-Azanza , M. , Gasca , J. M. , Diaz-Martínez , I. , Bauluz Lázaro , B. , Canudo Sanagustín , J. I. , Fernández , A. & Pérez-Lorente , F. (2016). A multi-ootaxic assemblage from the Lower Cretaceous of the Cameros Basin (La Rioja; Northern Spain). Span. J. Palaeo., 31, pp. 305–320.
Ngo , H. N. , Nguyen , T. Q. , Nguyen , T. V. , van Schingen , M. and Ziegler , T. (2018). Microhabitat selection and communal nesting in the insular psychedelic rock gecko, Cnemaspis psychedelica, in Southern Vietnam with updated information on trade. Nat. Cons. 31, pp. 1–16.
Novosolov , M. and Meiri , S. (2013). The effect of island type on lizard reproductive traits. Biogeog. J. , 40, pp. 2385–2395.
Novosolov , M. , Raia , P. and Meiri , S. (2013). The island syndrome in lizards. Glob. Ecol. Biogeog., 22, pp. 184–191.
Pafilis , P. , Foufopoulos , J. , Sagonas , K. , Runemark , A. , Svensson , E. , and Valakos , E. D. (2011). Reproductive biology of insular reptiles: marine subsidies modulate expression of the “island Syndrome”. Copeia, 2011, pp. 545–552.
Pyron , R. A. (2017). Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst. Bio., 66, pp. 38–56.
Reeder , T. W. , Townsend , T. M. , Mulcahy , D. G. , Noonan , B. P. , Wood , P. L. , Sites , J. W. and Wiens , J. J. (2015). Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE 10, pp. e0118199.
Roll , U. , Mittermeier , J. C. , Diaz , G. I. , Novosolov , M. , Feldman , A. , Itescu , Y. , Meiri , S. and Grenyer , R. (2016). Using Wikipedia page views to explore the cultural importance of global reptiles. Biol. Cons. 204, pp. 42–50.
Roll , U. , Feldman , A. , Novosolov , M. , Allison , A. , Bauer , A. , Bernard , R. , Bohm , M. , Chirio , L. , Collen , B. , Colli , G. R. , Dabul , L. , Das , I. , Doan , T. , Grismer , L. , Herrera , F. C. , Hoogmoed , M. , Itescu , Y. , Kraus , F. , LeBreton , M. , Lewin , A. , Martins , M. , Maza , E. , Meirte , D. , Nagy , Z. , Nogueira , C. C. , Pauwels , O. S.G. , Pincheira-Donoso , D. , Powney , G. , Sindaco , R. , Tallowin , O. , Torres-Carvajal , O. , Trape , J. F. , Uetz , P. , Vidan , E. Wagner , P. , Wang , Y. Z. , Orme , D. , Grenyer , R. and Meiri , S. (2017). The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. & Evol. 1, pp. 1677–1682.
Rosler , H. (2005). Vermehrung von Geckos. Offenbach: Herpeton.
Scharf , I. , Feldman , A. , Novosolov , M. , Pincheira-Donoso , D. , Das , I. , Bohm , M. , Uetz , P. , Torres-Carvajal , O. , Bauer , A. M. , Roll , U. and Meiri , S. (2015). Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Glob. Ecol. Biogeog. 24, pp. 396–405.
Scherz , M. D. , Daza , J. D. , Kohler , J. , Vences , M. , and Glaw , F. (2017). Off the scale: a new species of fishscale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales. PeerJ 5, pp. e2955.
Schoener , T. W. (1974). Resource partitioning in ecological communities. Science, 185, pp. 27–39.
Schwarz, R., Itescu, Y., Antonopoulos, A., Gavriilidi, I-A., Tamar, K., Pafilis, P. and Meiri, S. 2020. Isolation and predation drive gecko life-history evolution on islands. Biol. J. Linn. Soc. doi.org/10.1093/biolinnean/blz187.
Selcer , K.W. (1986). Life history of a successful colonizer: the Mediterranean gecko, Hemidactylus turcicus, in southern Texas. Copeia, 1986, pp. 956–962.
Simões , T. R. , Caldwell , M. W. , Nydam , R.L. and Jiménez-Huidobro , P. (2017). Osteology, phylogeny, and functional morphology of two Jurassic lizard species and the early evolution of scansoriality in geckoes. Zool. J. Linn. Soc., 180, pp. 216–241.
Sites , J. W. , Reeder , T. W. and Wiens , J. J. (2011). Phylogenetic insights on evolutionary novelties in lizards and snakes: sex, birth, bodies, niches, and venom. Ann. Rev. Ecol. Evol. Syst. 42, pp. 227–244.
Slavenko , A. , Itescu , Y. , Foufopoulos , J. , Pafilis , P. and Meiri , S. (2015). Clutch size variability in an ostensibly fix-clutched lizard: effects of insularity on a Mediterranean gecko. Evol. Biol., 42, pp. 129–136.
Stark , G. , Schwarz , G. and Meiri , G. (2020). Does nocturnal activity prolong longevity of geckos, compared to other lizard clades? Isr. J. Ecol. Evol., this issue.
Stark , G. , Tamar , K. , Itescu , Y. , Feldman , A. and Meiri , S. (2018). Cold and isolated ectotherms: drivers of reptilian longevity. Biol. J. Linn. Soc. 125, pp. 730–740.
Tingley , R. , Hitchmough , R. A. and Chapple , D. G. (2013). Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards. Biol. Cons. 165, pp. 62–68.
Toft , C.A. (1985). Resource partitioning in amphibians and reptiles. Copeia, 1985, pp. 1–21.
Uetz , P . (2019). The reptile database, http://reptile-database.reptarium.cz, accessed July 13, 2019.
Uetz, P., Slavenko, A., Meiri, S. and Heinicke, M. 2020. Gecko diversity: a history of global discovery. Isr. J. Ecol. Evol.
Uyeda, J. C., Zenil-Ferguson, R. and Pennell, M. W. 2018. Rethinking phylogenetic comparative methods. Syst. Biol. 67, pp. 1091–1109.
van Winkel , D. , Baling , M. and Hitchmough , R. (2019). Reptiles and Amphibians of New Zealand. A Field Guide. Auckland: Auckland University Press.
Vidan , E. , Roll , U. , Bauer , A. M. , Grismer , L. L. , Guo , P. , Maza , E. , Novosolov , M. , Sindaco , R. , Wagner , P. , Belmaker , J. and Meiri , S. (2017). The Eurasian hot nightlife - environmental forces associated with nocturnality in lizards. Glob. Ecol. Biogeog. 26, pp. 1316–1325.
Vitt , L. J. (1986). Reproductive tactics of sympatric gekkonid lizards with a comment on the evolutionary and ecological consequences of invariant clutch size. Copeia 1986, pp. 773–786.
Vitt , L. J. and Pianka , E. R. (2005). Deep history impacts present-day ecology and biodiversity. PNAS 102, pp. 7877–7881.
Werner , Y. L. (1969). Eye size in geckos of various ecological types (Reptilia: Gekkonidae and Sphaerodactylidae). Isr. J. Zool., 18, pp. 291–316.
Westoby , M. Leishman , M. and Lord , J. (1995a). On misinterpreting phylogenetic correction. J. Ecol. 83, pp. 531–534.
Westoby , M. Leishman , M. and Lord , J. (1995b). Further remarks on phylogenetic correction. J. Ecol. 83, pp. 727–734.
Zheng , Y. and Wiens , J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylog. Evol. 94, pp. 537–547.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1145 | 411 | 18 |
Full Text Views | 79 | 18 | 0 |
PDF Views & Downloads | 114 | 31 | 0 |
Geckos are a hyper-diverse, ancient, and globally distributed group. They have diverged early from other squamates and thus can be expected to differ from them along multiple ecological, life history, and biogeographic axes. I review a wide range of gecko traits, comparing them to those of other lizard taxa, to identify the unique, and unifying, attributes of geckos among lizards, based on comprehensive databases of lizard distributions and biological attributes. Few traits completely separate geckos from other lizard taxa, yet they differ to a large degree along many axes: they are more restricted to low latitudes and altitudes, are especially diverse on islands, but relatively scarce in America. They are small lizards, that lay small, fixed clutch sizes, for which they compensate only partially by laying frequently. Because they mature at relatively similar ages and have similar lifespans to other lizards, geckos produce fewer offspring over a year, and over their lifetimes, perhaps implying that they enjoy higher survival rates. While being the only large lizard clade of predominantly nocturnal lizards a large proportion of species is active by day. Gecko body temperatures and preferred temperatures are lower than those of other lizards –even when they are compared to lizards with similar activity times. Worryingly, most geckos have small ranges that often reside completely outside of protected areas – much more frequently than in other reptile and vertebrate taxa.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1145 | 411 | 18 |
Full Text Views | 79 | 18 | 0 |
PDF Views & Downloads | 114 | 31 | 0 |