While there have been recent breakthroughs in human vaginal microbiome research, very few non-human primate (NHP) vaginal microbiome studies exist due to difficulty in obtaining samples. In this study, we sought to: (1) characterize the bonobo vaginal microbiota for the first time, and (2) determine the relationship between vaginal pH and swelling size. During a 21-day study period, we collected observational data and 71 vaginal swabs from three cohoused adult females at the Ape Cognition and Conservation Initiative. After filtering and classification, a total of 3452 amplicon sequence variants were recruited from 12 vaginal samples. The most dominant phylum represented was Actinobacteria, and the most abundant genera were Gardnerella, Atopobium, and Prevotella. The mean pH score was 6.1 (range: 5.1-7.0), and pH levels varied with relative swelling size. This is the first study to examine the vaginal microbial composition in this species, and it conforms to previous NHP studies in that there was not the same bacterial dominance of Lactobacillus spp. often highlighted in human vaginal microbiota studies. Our findings suggest there may be other factors contributing to the protection of the bonobo vaginal environment, but future analysis of a larger sample is needed to fully understand how sociality and sexuality shape vaginal microbiota and host health.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Altmann J (1974). Observational study of behavior: sampling methods. Behaviour 49(3): 227–267.
Anahtar MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, Padavattan N, Ismail N, Moodley A, Sabatini ME, Ghebremichael MS, Nusbaum C, Huttenhower C, Virgin HW, Ndung’u T, Dong KL, Walker BD, Fichorova RN, Kwon DS (2015). Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity 42(5): 965–976. DOI: 10.1016/j.immuni.2015.04.019.
Archie EA, Tung J (2015). Social behavior and the microbiome. Current Opinion in Behavioral Sciences 6: 28–34. DOI: 10.1016/j.cobeha.2015.07.008.
Barelli C, Albanese D, Donati C, Pindo M, Dallago C, Rovero F, Cavalieri D, Tuohy KM, Hauffe HC, Filippo CD (2015). Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Scientific Reports 5: 14862. DOI: 10.1038/srep14862.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Caporaso JG, et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37(8). DOI: 10.1038/s41587-019-0209-9.
Brotman RM (2011). Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective. The Journal of Clinical Investigation 121(12): 4610–4617. DOI: 10.1172/JCI57172.
Buvé A, Jespers V, Crucitti T, Fichorova RN (2014). The vaginal microbiota and susceptibility to HIV. AIDS 28(16): 2333. DOI: 10.1097/QAD.0000000000000432.
Callahan B, Davis NM, Ernst FGM (2023). decontam: identify contaminants in marker-gene and metagenomics sequencing data (1.22.0) [Computer software]. Bioconductor version: release (3.18). DOI: 10.18129/B9.bioc.decontam.
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108(supplement_1): 4516–4522. DOI: 10.1073/pnas.1000080107.
Clay Z, De Waal FBM (2015). Sex and strife: post-conflict sexual contacts in bonobos. Behaviour 152(3-4): 313–334. DOI: 10.1163/1568539X-00003155.
Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, Travis DA, Long HT, Tuan BV, Minh VV, Cabana F, Nadler T, Toddes B, Murphy T, Glander KE, Johnson TJ, Knights D (2016). Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences 113(37): 10376–10381. DOI: 10.1073/pnas.1521835113.
Davenport ER, Mizrahi-Man O, Michelini K, Barreiro LB, Ober C, Gilad Y (2014). Seasonal variation in human gut microbiome composition. PLOS ONE 9(3). DOI: 10.1371/journal.pone.0090731.
Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, Palloni A, Sorenson T, Rey FE, Herd P (2019). Close social relationships correlate with human gut microbiota composition. Scientific Reports 9(1): 703. DOI: 10.1038/s41598-018-37298-9.
Douglas PH, Hohmann G, Murtagh R, Thiessen-Bock R, Deschner T (2016). Mixed messages: wild female bonobos show high variability in the timing of ovulation in relation to sexual swelling patterns. BMC Evolutionary Biology 16(1): 140. DOI: 10.1186/s12862-016-0691-3.
Frankel JS, Mallott EK, Hopper LM, Ross SR, Amato KR (2019). The effect of captivity on the primate gut microbiome varies with host dietary niche. American Journal of Primatology 81(12): e23061. DOI: 10.1002/ajp.23061.
Fruth B, Hohmann G (2006). Social grease for females? Same-sex genital contacts in wild bonobos. In Homosexual Behaviour in Animals: an Evolutionary Perspective, pp. 294–315. Cambridge, Cambridge University Press.
Fuochi V, Li Volti G, Furneri PM (2017). Commentary: Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Frontiers in Microbiology 8: 1815. DOI: 10.3389/fmicb.2017.01815.
Furuichi T, Idani G, Ihobe H, Hashimoto C, Tashiro Y, Sakamaki T, Mulavwa MN, Yangozene K, Kuroda S (2012). Long-term studies on wild bonobos at Wamba, Luo Scientific Reserve, D.R. Congo: towards the understanding of female life history in a male-philopatric species. In Long-Term Field Studies of Primates (Kappeler PM, Watts DP, eds.), pp. 413–433. Berlin Heidelberg, Springer. DOI: 10.1007/978-3-642-22514-7_18.
Grieneisen LE, Charpentier MJE, Alberts SC, Blekhman R, Bradburd G, Tung J, Archie EA (2019). Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proceedings of the Royal Society B: Biological Sciences 286(1901). DOI: 10.1098/rspb.2019.0431.
Hallmaier-Wacker LK, Lueert S, Roos C, Knauf S (2019). The influence of sex on the urogenital microbiome of rhesus monkeys. Microbiology. [Preprint]. DOI: 10.1101/555771.
Hare B, Melis AP, Woods V, Hastings S, Wrangham R (2007). Tolerance allows bonobos to outperform chimpanzees on a cooperative task. Current Biology 17(7): 619–623. DOI: 10.1016/j.cub.2007.02.040.
Hayashida S, Takada K, Melnikov VG, Komine-Aizawa S, Tsuji NM, Hayakawa S (2022). How were Lactobacillus species selected as single dominant species in the human vaginal microbiota? Coevolution of humans and Lactobacillus. Medical Hypotheses 163: 110858. DOI: 10.1016/j.mehy.2022.110858.
Heil BA, Paccamonti DL, Sones JL (2019). Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiological Genomics 51(8): 390–399. DOI: 10.1152/physiolgenomics.00045.2019.
Hočevar K, Maver A, Vidmar Šimic M, Hodžić A, Haslberger A, Premru Seršen T, Peterlin B (2019). Vaginal microbiome signature is associated with spontaneous preterm delivery. Frontiers in Medicine 6: 201. DOI: 10.3389/fmed.2019.00201.
Kassambara A (2023). rstatix: pipe-friendly framework for basic statistical tests (0.7.2) [Computer software]. https://cran.r-project.org/web/packages/rstatix/index.html.
Katz-Wise SL (2015). Sexual fluidity in young adult women and men: associations with sexual orientation and sexual identity development. Psychology & Sexuality 6(2): 189–208. DOI: 10.1080/19419899.2013.876445.
Lewis FMT, Bernstein KT, Aral SO (2017). Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstetrics and Gynecology 129(4): 643–654. DOI: 10.1097/AOG.0000000000001932.
Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, Li L, Nelson KE, Xia Y, Xiang C (2010). Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11(1): 488. DOI: 10.1186/1471-2164-11-488.
Manson JH, Perry S, Parish AR (1997). Nonconceptive sexual behavior in bonobos and capuchins. International Journal of Primatology 18(5): 767–786. DOI: 10.1023/A:1026395829818.
McMurdie PJ, Holmes S (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE 8(4). DOI: 10.1371/journal.pone.0061217.
Miller EA, Beasley DE, Dunn RR, Archie EA (2016). Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Frontiers in Microbiology 7. DOI: 10.3389/fmicb.2016.01936.
Miller EA, Livermore JA, Alberts SC, Tung J, Archie EA (2017). Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome 5(1): 8. DOI: 10.1186/s40168-017-0228-z.
Mirmonsef P, Hotton AL, Gilbert D, Burgad D, Landay A, Weber KM, Cohen M, Ravel J, Spear GT (2014). Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLOS ONE 9(7): e102467. DOI: 10.1371/journal.pone.0102467.
Nunn CL, Scully EJ, Kutsukake N, Ostner J, Schülke O, Thrall PH (2014). Mating competition, promiscuity, and life history traits as predictors of sexually transmitted disease risk in primates. International Journal of Primatology 35(3-4): 764–786. DOI: 10.1007/s10764-014-9781-5.
O’Hanlon DE, Come RA, Moench TR (2019). Vaginal pH measured in vivo: Lactobacilli determine pH and lactic acid concentration. BMC Microbiology 19(1): 13. DOI: 10.1186/s12866-019-1388-8.
Paradis E, Claude J, Strimmer K (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2): 289–290. DOI: 10.1093/bioinformatics/btg412.
Perofsky AC, Lewis RJ, Meyers LA (2019). Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. The ISME Journal 13(1). DOI: 10.1038/s41396-018-0251-5.
Reichert KE, Heistermann M, Keith Hodges J, Boesch C, Hohmann G (2002). What females tell males about their reproductive status: are morphological and behavioural cues reliable signals of ovulation in bonobos (Pan paniscus)? Ethology 108(7): 583–600. DOI: 10.1046/j.1439-0310.2002.00798.x.
Ryu H, Hill DA, Furuichi T (2015). Prolonged maximal sexual swelling in wild bonobos facilitates affiliative interactions between females. Behaviour 152(3-4): 285–311. DOI: 10.1163/1568539X-00003212.
Sarkar A, Harty S, Johnson KV-A, Moeller AH, Archie EA, Schell LD, Carmody RN, Clutton-Brock TH, Dunbar RIM, Burnet PWJ (2020). Microbial transmission in animal social networks and the social microbiome. Nature Ecology & Evolution 4(8). DOI: 10.1038/s41559-020-1220-8.
Sommer V, Bauer J, Fowler A, Ortmann S (2011). Patriarchal chimpanzees, matriarchal bonobos: potential ecological causes of a pan aichotomy. In Primates of Gashaka: Socioecology and Conservation in Nigeria’s Biodiversity Hotspot (Sommer V, Ross C, eds.), pp. 469–501. Springer. DOI: 10.1007/978-1-4419-7403-7_12.
Song SD, Acharya KD, Zhu JE, Deveney CM, Walther-Antonio MRS, Tetel MJ, Chia N (2020). Daily vaginal microbiota fluctuations associated with natural hormonal cycle, contraceptives, diet, and exercise. mSphere 5(4): e00593-20. DOI: 10.1128/mSphere.00593-20.
Stumpf RM, Wilson BA, Rivera A, Yildirim S, Yeoman CJ, Polk JD, White BA, Leigh SR (2013). The primate vaginal microbiome: comparative context and implications for human health and disease. American Journal of Physical Anthropology 152(S57): 119–134. DOI: 10.1002/ajpa.22395.
Team RDC (2010). R: a language and environment for statistical computing. Available at: https://cir.nii.ac.jp/crid/1370294721063650048.
Torcia MG (2019). Interplay among vaginal microbiome, immune response and sexually transmitted viral infections. International Journal of Molecular Sciences 20(2). DOI: 10.3390/ijms20020266.
Tuddenham S, Gajer P, Burke A, Murphy C, Klein SL, Stennett CA, Wilgus B, Ravel J, Ghanem KG, Brotman RM (2023). Lactobacillus-dominance and rapid stabilization of vaginal microbiota in combined oral contraceptive pill users examined through a longitudinal cohort study with frequent vaginal sampling over two years. eBioMedicine 87: 104407. DOI: 10.1016/j.ebiom.2022.104407.
Uchihashi M, Bergin IL, Bassis CM, Hashway SA, Chai D, Bell JD (2015). Influence of age, reproductive cycling status, and menstruation on the vaginal microbiome in baboons (Papio anubis). American Journal of Primatology 77(5): 563–578. DOI: 10.1002/ajp.22378.
Verstraelen H, Verhelst R, Claeys G, Temmerman M, Vaneechoutte M (2004). Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. American Journal of Obstetrics and Gynecology 191(4): 1130–1132. DOI: 10.1016/j.ajog.2004.04.013.
White J, Mirleau P, Danchin E, Mulard H, Hatch SA, Heeb P, Wagner RH (2010). Sexually transmitted bacteria affect female cloacal assemblages in a wild bird: sexually transmitted bacteria in kittiwakes. Ecology Letters 13(12). DOI: 10.1111/j.1461-0248.2010.01542.x.
Yildirim S, Yeoman CJ, Janga SC, Thomas SM, Ho M, Leigh SR, White BA, Wilson BA, Stumpf RM (Primate Microbiome, 2014). Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. The ISME Journal 8(12): 2431–2444. DOI: 10.1038/ismej.2014.90.
Zhu L, Lei AH, Zheng HY, Ly LB, Zhang ZG, Zheng YT (2015). Longitudinal analysis reveals characteristically high proportions of bacterial vaginosis-associated bacteria and temporal variability of vaginal microbiota in northern pig-tailed macaques (Macaca leonina). Zoological Research 36(5): 285–298. DOI: 10.13918/j.issn.2095-8137.2015.5.2859999.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 649 | 648 | 13 |
Full Text Views | 31 | 31 | 0 |
PDF Views & Downloads | 72 | 72 | 0 |
While there have been recent breakthroughs in human vaginal microbiome research, very few non-human primate (NHP) vaginal microbiome studies exist due to difficulty in obtaining samples. In this study, we sought to: (1) characterize the bonobo vaginal microbiota for the first time, and (2) determine the relationship between vaginal pH and swelling size. During a 21-day study period, we collected observational data and 71 vaginal swabs from three cohoused adult females at the Ape Cognition and Conservation Initiative. After filtering and classification, a total of 3452 amplicon sequence variants were recruited from 12 vaginal samples. The most dominant phylum represented was Actinobacteria, and the most abundant genera were Gardnerella, Atopobium, and Prevotella. The mean pH score was 6.1 (range: 5.1-7.0), and pH levels varied with relative swelling size. This is the first study to examine the vaginal microbial composition in this species, and it conforms to previous NHP studies in that there was not the same bacterial dominance of Lactobacillus spp. often highlighted in human vaginal microbiota studies. Our findings suggest there may be other factors contributing to the protection of the bonobo vaginal environment, but future analysis of a larger sample is needed to fully understand how sociality and sexuality shape vaginal microbiota and host health.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 649 | 648 | 13 |
Full Text Views | 31 | 31 | 0 |
PDF Views & Downloads | 72 | 72 | 0 |