Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
Plants are infected by many pathogens, among them bacteria. Some pathogenic bacteria enter the plant through a wound or natural opening; others colonize the salivary glands of an insect vector and are injected into the plant tissue when the insect feeds. Insects of the order Hemiptera are common vectors of plant bacterial diseases and also host symbiotic bacteria, which may be mutualists, commensals, or pathogens. While working on several hemipteran-symbiont systems, we consistently found high similarities between bacterial genes associated with hemipterans and bacterial genes associated with plants, some of the latter referred to as plant pathogens. Therefore, we assume that some bacteria may be shared by hemipterans and plants, first evolving as a symbiont of one and later, via feeding, becoming adapted to the other. Here we present five examples of hemipteran symbionts that are highly similar in their 16S rRNA gene sequence to plant pathogens and focus on two specific examples. We discuss the possibility of hemipteran symbionts' evolution into plant pathogens and vice versa, as well as the importance of possible changes in these bacteria's lifestyles to herbivores and humans.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Allen, J. M., Reed, D. L., Perotti, M. A., Braig, H. R. 2007. Evolutionary relationships of ";Candidatus Riesia spp.," endosymbiotic Enterobacteriaceae living within hematophagous primate lice. Appl. Env. Microbiol. 73: 1659-1664.
Allison, J. D., Borden, J. H., Seybold, S. J. 2004. A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14: 123-150.
Babendreier, D., Joller, D., Romeis, J., Bigler, F., Widmer, F. 2007. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59: 600-610.
Baumann, P. 1995. Genetics, physiology and evolutionary relationship of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49: 55-94.
Baumann, P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59: 155-189.
Beanland, L., Hoy, C. W., Miller, S. A., Nault, L. R. 2000. Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Ann. Entomol. Soc. Am. 93: 271-76.
Bigliardi, E., Sacchi, L., Alma, G. M., Pajoro, A., DaVonchio, D., Marzorati, M., Avanzati, A. M. 2006. Ultrastructure of a novel Cardinium sp. symbiont in Scaphoideus titanus (Hemiptera: Cicadellidae). Tissue Cell 38: 257-261.
Bressan, A., S�m�tey, O., Nusillard, B., Clair, D., Boudon-Padieu, E. 2008. Insect vectors (Hemiptera: Cixiidae) and pathogens associated with the disease syndrome "basses richesses" of sugar beet in France. Plant Dis. 92(1): 113-119.
Bridges, J. R. 1981. Nitrogen-fixing bacteria associated with bark beetles. Microb. Ecol. 7: 131-137.
Chiel, E., Zchori-Fein, E., Inbar, M., Gottlieb, Y., Adachi-Hagimori, T., Kelly, S. E., Asplen, M. K., Hunter, M. S. 2009. Almost there: transmission routes of bacterial symbionts between trophic levels. PLoS One 4(3): e4767.
Cole, R. A., Rollason, S. A., Hardman, J. A., Ellis, P. R. 1990. The incidence of seed-borne bacteria in carrots and their association with the damage caused by the larvae of the carrot fly (Psila rosae). Brighton Crop Protection Conference—Pests and Diseases, pp. 343-347.
Cooper, R. M. 1981. Pathogen induced changes in host ultrastructure. In: Staples, R. C., Toenniessen, G. H., eds. Plant disease control: resistance and susceptibility. Wiley, New York, pp. 105-142.
Cooper, R. M. 1983. The mechanism and significance of enzymatic degradation of host cell-walls by parasites. In: Callow, J., ed. Biochemical plant pathology. Wiley, New York, pp. 10l-136.
de Bary, A. 1879. Die Erscheinung der Symbiose. Karl J. Trubner, Strassbourg.
Dillon, R. J., Charnley, A. K. 1995. Chemical barriers to gut infection in the desert locust: in vivo production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. J. Invertebr. Pathol. 66: 72-75.
Douglas, A. E. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43: 17-37.
Dunn, A. K., Stabb, E. V. 2005. Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae). Appl. Environ. Microbiol. 71: 8784-8794.
Ferrari, J., Darby, A. C., Daniell, T. J., Godfray, H. C. J., Douglas, A. E. 2004. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29: 60-65.
Gherna, R. L., Werren, J. H., Weisburg, W., Cote, R., Woese, C. R., Mandelco, L., Brenner, D. J. 1991. Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int. J. System. Bacteriol. 41: 563-565.
Gottlieb, Y., Ghanim, M., Gueguen, G., Kontsedalov, S., Vavre, F., Fleury, F., Zchori-Fein, E. 2008. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 22: 2591-2599.
Grindle, N., Tyner, J. J., Clay, K., Fuqua, C. 2003. Identification of Arsenophonus-type bacteria from the dog tick Dermacentor variabilis. J. Invertebr. Pathol. 83: 264-266.
Gunawan, S., Tufts, D. M., Bextine, B. 2008. Molecular identification of hemolymph-associated symbiotic bacteria in red imported fire ant larvae. Curr. Microbiol. 57(6): 575-579.
Harada, H., Oyaizu, H., Kosako, Y., Ishikawa, H. 1997. Erwinia aphidicola, a new species isolated from pea aphid, Acyrthosiphon pisum. J. Gen. Appl. Microbiol. 43: 349-354.
Hypša, V., Dale, C. 1997. In vitro culture and phylogenetic analysis of ";Candidatus Arsenophonus triatominarum," an intracellular bacterium from the triatomine bug, Triatoma infestans. Int. J. System. Bacteriol. 47: 1140-1144.
Maier, R. M., Pepper, I. E. 2009. Bacterial communities in natural ecosystems. In: Maier, R. M., Pepper, I. E., eds. Environmemtal microbiology. Academic Press, New York, pp. 348-349
Mello, M. O., Silva-Filho, M. C. 2002. Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Brazilian J. Plant Physiol. 14(2): 71-81.
Mitsuhashi, W., Saiki, T., Wei, W., Kawakita, H., Sato, M. 2002. Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Mol. Biol. 11: 577-584.
Montllor, C. B., Maxmen, A., Purcell, A. H. 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27: 189-195.
Moran, N. A., Dunbar, E. D. 2006. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl. Acad. Sci. USA 103: 12803-12806.
Moran, N. A., McCutcheon, J. P., Nakabachi, A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42: 165-190.
Moran, N. A., Wernegreen, J. J. 2000. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol. Evol. 15(8): 321-326.
Nault, L. R., Madden, L. V., Styer, W. E., Triplehorn, B. E., Shambaugh, G. F., Heady, S. E. 1984. Pathogenicity of Corn stunt spiroplasma and Maize bushy stunt mycoplasma to their vector Dalabulus longulus. Am. Phytopathol. Soc. 74(8): 977-979.
Nakabachi, A., Shigenobu, S., Sakazume, N., Shiraki, T., Hayashizaki, Y., Carninci, P., Ishikawa, H., Kudo, T., Fukatsu, T. 2005. Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc. Natl. Acad. Sci. USA 102: 5477-5482.
Nov�kov�, E., V�clav, H., Moran, N. A. 2009. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9: 143-157.
Oliver, K. M., Russell, J. A., Moran, N. A., Hunter, M. S. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 100: 1803-1807.
Potrikus, C. J., Breznak, J. A. 1977. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl. Environ. Microbiol. 33: 392-399.
Purcell, A. H. 1982. Insect vector relationships with procaryotic plant pathogens. Annu. Rev. Phytopathol. 20: 397-417.
Purcell, A. H., Suslow, K. G., Klein, M. 1994. Transmission via plants of an insect pathogenic bacterium that does not multiply or move in plants. Microb. Ecol. 27: 19-26.
Rouault, G., Turgeon, J., Candau, J. N., Roques, A., von Aderkas, P. 2004. Oviposition strategies of conifer seed chalcids in relation to host phenology. Naturwissenschaften 91: 472-480.
Salar, P., S�m�tey, O., Danet, J. L., Boudon-Padieu, E., Foissac, X. 2009. ";Candidatus Phlomobacter fragariae" and the proteobacterium associated with the low sugar content syndrome of sugar beet are related to bacteria of the arsenophonus clade detected in hemipteran insects. Eur. J. Plant Pathol. 126(1): 123-127.
Scarborough, C. L., Ferrari, J., Godfray, H. C. J. 2005. Aphid protected from pathogen by endosymbiont. Science 310: 1781.
Schuster, M. L., Coyne, D. P. 1974. Survival mechanisms of phytopathogenic bacteria. Annu. Rev. Phytopathol. 12: 199-221.
Semetey, O., Gatineau, F., Bressan, A., Boudon-Padieu, E. 2007. Characterization of a gamma-3 proteobacteria responsible for the syndrome "basses richesses" of sugar beet transmitted by Pentastiridius sp. (Hemiptera, Cixiidae). Phytopathology 97: 72-78.
Sharma, P. D. 2004. Diseases caused by Bacteria and Mollicutes. In: Plant pathology. Rastogi Publications, New Delhi, pp. 179-215.
Sintupachee, S., Milne, J. R., Poonchaisri, S., Baimai, V., Kittayapong, P. 2006. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb. Ecol. 51: 294-301.
Tanaka, M., Nao, M., Usugi, T. 2006. Occurrence of strawberry marginal chlorosis caused by ";Candidatus Phlomobacter fragariae" in Japan. J. Gen. Plant Pathol. 72: 374-377.
Thao, M. L. L., Baumann, P. 2004. Evidence for multiple acquisitions of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr. Microbiol. 48: 140-144.
Trowbridge, R. E., Dittmar, K., Whiting, M. F. 2006. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J. Invertebr. Pathol. 91: 64-68.
Tsuchida, T., Koga, R., Fukatsu, T. 2004. Host plant specialization governed by facultative symbiont. Science 303: 1989-1989.
Tsuchida, T., Koga, R., Shibao, H., Matsumoto, T., Fukatsu, T. 2002. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 11: 2123-2135.
Wei, W., Cao, Z., Zhu, Y. L., Wang, X., Ding, G., Xu, H., Jia, P., Qu, D., Danchin, A. and Li, Y. 2006. Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC Genomics 7: 112.
Weintraub, P. G., Beanland, L. 2006. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51: 91-111.
Zchori-Fein, E., Brown, J. K. 2002. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann. Entomol. Soc. Am. 95: 711-718.
Zhang, T., Breitbart, M., Lee, W. H., Run, J. Q., Wei, C. L., Soh, S. W. L., Hibberd, M. L., Liu, E. T., Rohwer, F., Ruan, Y. 2005. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 4: e3.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 114 | 23 | 11 |
Full Text Views | 12 | 1 | 0 |
PDF Views & Downloads | 8 | 4 | 0 |
Plants are infected by many pathogens, among them bacteria. Some pathogenic bacteria enter the plant through a wound or natural opening; others colonize the salivary glands of an insect vector and are injected into the plant tissue when the insect feeds. Insects of the order Hemiptera are common vectors of plant bacterial diseases and also host symbiotic bacteria, which may be mutualists, commensals, or pathogens. While working on several hemipteran-symbiont systems, we consistently found high similarities between bacterial genes associated with hemipterans and bacterial genes associated with plants, some of the latter referred to as plant pathogens. Therefore, we assume that some bacteria may be shared by hemipterans and plants, first evolving as a symbiont of one and later, via feeding, becoming adapted to the other. Here we present five examples of hemipteran symbionts that are highly similar in their 16S rRNA gene sequence to plant pathogens and focus on two specific examples. We discuss the possibility of hemipteran symbionts' evolution into plant pathogens and vice versa, as well as the importance of possible changes in these bacteria's lifestyles to herbivores and humans.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 114 | 23 | 11 |
Full Text Views | 12 | 1 | 0 |
PDF Views & Downloads | 8 | 4 | 0 |