RNA interference and targeted genome editing for improvement of rice (Oryza sativa L.)

In: Israel Journal of Plant Sciences

ABSTRACT

Rice (Oryza sativa L.) is one of the most important food crops. Various conventional and modern techniques have been employed for improvement in rice. RNA interference (RNAi) is one of the popular reverse genetic strategies being practiced among plant scientists due to its efficiency and specificity. Nowadays, new age-targeted genome editing tools such as transcription activator-like effectors nucleases (TALEN) and clustered regularly interspaced palindromic repeats (CRISPR/Cas) are becoming popular due to their ability of precise modification of genome sequence and regulation of gene expression patterns in a site-specific manner. Here, we reviewed the utility of RNAi, TALEN and CRISPR/Cas in various aspects of rice improvement such as plant architecture, plant development, biotic and abiotic stress tolerance and qualitative improvement. A comparison of RNAi and targeted genome editing methods will provide some insights for researchers working on improvement of rice.

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G. 2009. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J. 57:798–809.

    • Search Google Scholar
    • Export Citation
  • Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK. 2013a. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. Rice. 6:12.

    • Search Google Scholar
    • Export Citation
  • Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK. 2013b. Development of low phytate rice by RNAi mediated seed-specific silencing of Inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS One. 8(7):e68161. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrieu A, Breitler JC, Siré C, Meynard D, Gantet P, Guiderdoni E. 2012. An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice. 5:23.

    • Search Google Scholar
    • Export Citation
  • Arenhart RA, Margis R, Margis-Pinheiro M. 2012. The rice ASR5 protein A: putative role in the response to aluminium photosynthesis disturbance. Plant Signal Behav. 7:1263–1266.

    • Search Google Scholar
    • Export Citation
  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R. 2012. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J. 69:26–36.

    • Search Google Scholar
    • Export Citation
  • Bae HK, Kang HG, Kim GJ, Eu HJ, Oh SA, Song JT, Chung IK, Eun MY, Park SK. 2010. Transgenic rice plants carrying RNA interference constructs of AOS (allene oxide synthase) genes show severe male sterility. Plant Breed. 129:647–651.

    • Search Google Scholar
    • Export Citation
  • Bajaj S, Mohanty A. 2005. Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotech J. 3:275–307.

    • Search Google Scholar
    • Export Citation
  • Baker M. 2012. Gene editing nucleases. Nature Methods. 9:23–26.

  • Barrangou R. 2012. RNA-mediated programmable DNA cleavage. Nat Biotechnol. 30:836–838.

  • Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell. 54:234–244.

  • Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297.

  • Berner DK, Hoff BJ. 1986. Inheritance of scent in American long grain rice. Crop Sci. 26:876–878.

  • Bernstein N, Ioffe M, Bruner M, Nishri Y, Luria G, Dori I, Matan E, Philosoph-Hadas S, Umiel N, Hagiladi A. 2005. Effects of supplied nitrogen form and quantity on growth and postharvest quality of Ranunculus asiaticus flowers. HortScience. 40:1879–1886.

    • Search Google Scholar
    • Export Citation
  • Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Advances. 33:41–52.

  • Cai Y, Chen X, Xie K, Xing Q, Wu Y. 2014. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS One. 9(7):e102529. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK. 2014. Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen C, Niu X, Liu Y. 2012. Cloning, expression and RNAi vector transformation of a zinc finger protein gene OsWIP6 from rice. Chin J Appl Environ Biol. 18:200–205.

    • Search Google Scholar
    • Export Citation
  • Chen G, Wang Z, Liu QQ, Xiong F, Gu YJ, Gu GJ. 2006. Changes in the activities of enzymes involved in starch synthesis and accumulation in caryopsis of transgenic rice with antisense Wx gene. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 32:209–216.

    • Search Google Scholar
    • Export Citation
  • Chen K, Shan Q, Gao C. 2014. An efficient TALEN mutagenesis system in rice. Methods. 69: 2–8.

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 335:207–211.

    • Search Google Scholar
    • Export Citation
  • Chen M, Wei X, Shao G, Tang S, Luo J, Hu P. 2012. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed. 131:584–590.

    • Search Google Scholar
    • Export Citation
  • Chen Q, Chen X, Wang Q, Zhang F, Lou Z, Zhang Q, Zhou DX. 2013. Structural basis of a histone H3 Lysine 4 demethylase required for stem elongation in rice. PLoS Genet. 9(1):e1003239. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, Kato S, Maeshima M, et al. 2013. Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot. 64(14):4375–4387. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng X, Wu Y, Guo J, Du B, Chen R, Zhu L, He G. 2013. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. Plant J. 76(4):687–698. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chern M, Bai W, Chen X, Canlas PE, Ronald PC. 2013. Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice. Peer J. 1:e28. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chi Y, Moon JC, Park JH, Kim H, Zulfugarov IS, Fanata WI, Jang HH, Lee JR, Lee YM, Kim ST, et al. 2008. Abnormal chloroplast development and growth inhibition in rice thioredoxin m knock-down plants. Plant Physiol. 148:808–817.

    • Search Google Scholar
    • Export Citation
  • Endo M, Mikami M, Toki S. 2015. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 56:41–47.

    • Search Google Scholar
    • Export Citation
  • Fang C, Wang Q, Yu Y, Li Q, Zhang H, Wu X, Chen T, Lin W. 2011. Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul. 65:1–10.

    • Search Google Scholar
    • Export Citation
  • Feng Q, Qing Y, Chun W, Ying F, Xue W, Kai Z. 2007. Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica. 158:35–45.

    • Search Google Scholar
    • Export Citation
  • Ge LQ, Huang LJ, Yang GQ, Song QS, Stanley D, Gurr GM, Wu JC. 2013. Molecular basis for insecticide-enhanced thermo-tolerance in the brown planthopper Nilaparvata lugens Stål (Hemiptera:Delphacidae). Mol Ecol. 22:5624–5634. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldbach R, Bucher E, Prins M. 2003. Resistance mechanisms to plant viruses: an overview. Virus Res. 92:207–212.

  • Gothandam KM, Nalini E, Karthikeyan S, Shin JS. 2010. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol. 72:125–135.

    • Search Google Scholar
    • Export Citation
  • Hann LW, Tsuyoshi S, Tsutomu K, Kenji U, Ko S. 2004. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 135:1447–1456.

    • Search Google Scholar
    • Export Citation
  • Hinge V, Patil H, Nadaf A. 2015. Comparative characterization of aroma volatiles and related gene expression analysis at vegetative and mature stages in basmati and non-basmati rice (Oryza sativa L.) cultivars. Appl Biochem Biotechnol. 178(4):619–639. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirai S, Kodama H. 2008. RNAi vectors for manipulation of gene expression in higher plants. Open Plant Sci J. 2:21–30.

  • Hongliang G, Chu C, Wen J, Qun Z, Hong W, Rong W, Wenhua Z. 2012. The rice diacyl glycerol kinase family: functional analysis using transient RNA interference. Front Plant Sci. 3:1–10.

    • Search Google Scholar
    • Export Citation
  • Hu Y, Qin F, Huang L, Sun Q, Li C, Zhao Y, Zhou DX. 2009. Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun. 388:266–271.

    • Search Google Scholar
    • Export Citation
  • Hubbart S, Ajigboye O, Horton P, Murchie EH. 2012. The photoprotective protein PsbS exerts control over CO2 assimilation rate in fluctuating light in rice. Plant J. 71:402–412.

    • Search Google Scholar
    • Export Citation
  • Hudson D, Guevara DR, Hand AJ, Xu Z, Hao L, Chen X, Zhu T, Bi Y, Rothstein SJ. 2013. Rice cytokinin GATA transcription factor1 regulates chloroplast development and plant architecture. Plant Physiol. 162:132–144.

    • Search Google Scholar
    • Export Citation
  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK. 2010. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 62:379–390.

    • Search Google Scholar
    • Export Citation
  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, et al. 2012. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep. 2:286. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi K. 2013. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol. 161:1202–1216.

    • Search Google Scholar
    • Export Citation
  • Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G. 2012. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol. 156:1164–1175.

    • Search Google Scholar
    • Export Citation
  • Jiang C, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H. 2009. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact. 22:820–829.

    • Search Google Scholar
    • Export Citation
  • Jiang H, Zhang J, Wang J, Xia M, Zhu S, Cheng B. 2013. RNA interference-mediated silencing of the starch branching enzyme gene improves amylose content in rice. Genet Mol Res. 12:2800–2808.

    • Search Google Scholar
    • Export Citation
  • Jiang J, Li J, Xu Y, Han Y, Bai Y, Zhou G, Lou Y, Xu Z, Chong K. 2007. RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signaling in rice. Plant Cell Environ. 30:690–699.

    • Search Google Scholar
    • Export Citation
  • Jiang L, Guo J, Xu W, Ma M. 2007. RNA interference-mediated silencing of phytochelatin synthase gene reduces cadmium accumulation in rice seeds. J Integr Plant Biol. 49:1032–1037.

    • Search Google Scholar
    • Export Citation
  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. 2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41(20):e188. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin M, Yunzhi S, Bin W, Mingsong J, Kaidong L, Changxiang Z, Fujiang W. 2011. Production of transgenic rice new germplasm with strong resistance against two isolations of rice stripe virus by RNA interference. Transgenic Res. 20:1367–1377.

    • Search Google Scholar
    • Export Citation
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821.

    • Search Google Scholar
    • Export Citation
  • Kang K, Kim Y, Park S, Back K. 2009. Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol. 150:1380–1393.

    • Search Google Scholar
    • Export Citation
  • Katoch R, Thakur N. 2013. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants. Appl Biochem Biotechnol. 169:1579–1605.

    • Search Google Scholar
    • Export Citation
  • Ke Y, Liu H, Li X, Xiao J, Wang S. 2014. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen Interactions. Plant J. 78:619–31.

    • Search Google Scholar
    • Export Citation
  • Khush GS. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol. 59:1–6.

  • Kirk GJD, Kronzucker HJ. 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot. 96:639–646.

    • Search Google Scholar
    • Export Citation
  • Koshiba T, Hirose N, Mukai M, Yamamura M, Hattori T, Suzuki S, Sakamoto M, Umezawa T. 2013. Characterization of 5-hydroxyconiferaldehyde O-methyltransferase in Oryza sativa. Plant Biotechnol. 30:157–167.

    • Search Google Scholar
    • Export Citation
  • Kurihara Y, Watanabe Y. 2004. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci. 101:12753–8

    • Search Google Scholar
    • Export Citation
  • Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T. 2003. Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell. 15:1455–1467.

    • Search Google Scholar
    • Export Citation
  • Kuwano M, Mimura T, Takaiwa F, Yoshida KT. 2009. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D–myoinositol 3–phosphate synthase gene using the 18-kDa oleosin promoter. Plant Biotechnol J. 7:96–105.

    • Search Google Scholar
    • Export Citation
  • Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F. 2006. Molecular breeding for transgenic rice with low phytic acid phenotype through manipulating myo inositol 3 phosphate synthase gene. Mol Breed. 18:263–272.

    • Search Google Scholar
    • Export Citation
  • Lakshmi PM, Chen X, Clarke J, Salmeron J, Henry TN. 2012. RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot. 63:163–175.

    • Search Google Scholar
    • Export Citation
  • Lee S, Choi SC, An G. 2008. Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassino-steroid responses. Plant J. 54(1):93–105. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li C, Wei J, Lin Y, Chen H. 2012. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. Plant Cell Rep. 31:851–862.

    • Search Google Scholar
    • Export Citation
  • Li D, Liu H, Yang Y, Zhen P, Liang J. 2009. Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci. 16:14–20.

    • Search Google Scholar
    • Export Citation
  • Li G, Liang W, Zhang X, Ren H, Hu J, Bennett MJ, Zhang D. 2014. Rice actin-binding protein RMD is a key link in the auxin–actin regulatory loop that controls cell growth. Proc Natl Acad Sci. 111(28):10377–10382. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li J, Chang SS, Liu FQ, Shao M. 2012. Silencing of OsDUF500 gene in rice enhances resistance to Xanthomonas oryzae pv. Oryzae. Chinese J Rice Sci. 26:476–480.

    • Search Google Scholar
    • Export Citation
  • Li S, Zhou B, Peng X, Kuang X, Huang X, Yao J, Du B, Sun M. 2013. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. New Phytol. 201:66–79. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. 2011. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39:359–372.

    • Search Google Scholar
    • Export Citation
  • Li T, Liu B, Chen CY, Yang B. 2014. TALEN utilization in rice genome modifications. Methods. 69:9–16.

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnol. 30:390–392.

    • Search Google Scholar
    • Export Citation
  • Li WX, Huang JZ, Zhao HJ, Tan YY, Cui HR, Poirier Y, Shu QY. 2014b. Production of low phytic acid rice by hairpin RNA- and artificial microRNA-mediated silencing of OsMIK in seeds. Plant Cell, Tissue and Organ Culture. 119:15–25.

    • Search Google Scholar
    • Export Citation
  • Li WX, Zhao HJ, Pang WQ, Cui HR, Poirier Y, Shu QY. 2014a. Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice. Transgenic Res. 23:585–599.

    • Search Google Scholar
    • Export Citation
  • Lin DG, Chou SY, Wang AZ, Wang YW, Kuo SM, Lai CC, Chen LJ, Wang CS. 2013. A proteomic study of rice cultivar TNG67 and its high aroma mutant SA0420. Plant Sci. 214:20–28. doi: org/

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu C, Li J, Gao J, Shen Z, Lu B, Lin C. 2012. A built-in mechanism to mitigate the spread of insect-resistance and herbicide-tolerance transgenes into weedy rice populations. PLoS One. 7(2):e31625. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X. 2013. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol. 84(1):19–36. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long X, Liu Q, Chan M, Wang Q, Sun S. 2013. Metabolic engineering and profiling of rice with increased Lysine. Plant Biotechnol J. 11:490–501.

    • Search Google Scholar
    • Export Citation
  • Lu Y, Li Y, Yang Q, Zhang Z, Chen Y, Zhang S, Peng X. 2013. Suppression of glycolate oxidase causes glyoxylate accumulation that inhibits photosynthesis through deactivating Rubisco in rice. Physiol Plant. 150:463–476.

    • Search Google Scholar
    • Export Citation
  • Ma ZL, Yang HY, Wang R, Tien P. 2004. Construct hairpin RNA to fight against rice dwarf virus. Acta Bot Sin. 46:332–336.

  • Mahfouz M, Piatek A, Stewart Jr C. 2014. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotech J. 12:1006–1014.

    • Search Google Scholar
    • Export Citation
  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell. 136:656–668.

  • Mao Y, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song Y, Salzman K, Zeng RS. 2012. Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS One. 7(4):e36214. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathure SV, Jawali N, Thengane RJ, Nadaf AB. 2014. Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India. Food Chem. 142:383–391.

    • Search Google Scholar
    • Export Citation
  • Mathure SV, Wakte KV, Jawali N, Nadaf AB. 2011. Quantification of 2-acetyl-1-pyrroline and other rice aroma volatiles among Indian scented rice cultivars by HS-SPME/GC-FID. Food Anal Methods. 4:326–333.

    • Search Google Scholar
    • Export Citation
  • Mei C, Zhou X, Yang Y. 2007. Use of RNA interference to dissect defense-signaling pathways in rice. Methods Mol Biol. 354:161–171.

  • Meister G, Tuschl T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature. 431:343–349.

  • Mello CC, Conte D. 2004. Revealing the world of RNA interference. Nature. 431:338–342.

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L. 2013. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23:1233–1236.

    • Search Google Scholar
    • Export Citation
  • Mikami M, Toki S, Endo M. 2015. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep. 34(10):1807–1815. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miki D, Itoh R, Shimamoto K. 2005. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138:1903–1913.

    • Search Google Scholar
    • Export Citation
  • Moritoh S, Miki D, Akiyama M, Kawahara M, Izawa T, Maki H, Shimamoto K. 2005. RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant Cell Physiol. 46:699–715.

    • Search Google Scholar
    • Export Citation
  • Nemudryi A, Valetdinova K, Medvedev S, Zakian S. 2014. TALEN and CRISPR/Cas Genome editing systems: tools of discovery. Acta Naturae. 6:19–40.

    • Search Google Scholar
    • Export Citation
  • Ning Y, Chachawan J, Qingzhen Z, Zhang H, Chen S, Liu J, Liu L, Tang S, Park C, Wang X, et al. 2011. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol. 157: 242–255.

    • Search Google Scholar
    • Export Citation
  • Niu X, Wei T, Weizao H, Guangjun R, Qilin W, Di L, Yingyong X, Shimei Y, Feng W, Bao L, et al. 2008. RNAi-directed down regulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol. 8:100. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK. 2008. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem. 283:13407–13417.

    • Search Google Scholar
    • Export Citation
  • Patricia M, Myron B, Jan E. 2011. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. Plant J. 68:777–787.

    • Search Google Scholar
    • Export Citation
  • Peng H, Zhang Q, Li Q, Lei C, Zhai Y, Sun X, Sun D, Sun Y, Lu T. 2009. A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance. Planta. 230:377–385.

    • Search Google Scholar
    • Export Citation
  • Petolino JF. 2015. Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant. 51:1–8.

  • Prapapan T, Mahesh BC, Yiming J, Jarunya N, Timothy CH. 2003. Characterization of two rice DNA methyltransferases and RNAi-mediated restoration of promoter activity in silenced rice callus. Planta. 218:337–349. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao F, Chen Z. 2013. Alteration of rice growth and development via antisense expression of OsGA20ox2 gene. Afr J Biotechnol. 12:3898–3904.

    • Search Google Scholar
    • Export Citation
  • Sahi C, Sing A, Blumwald E, Grover A. 2006. Beyond osmolytes and transporters: novel plant salt-stress tolerances-related genes from transcriptional profiling data. Physiol Plant. 127:1–9.

    • Search Google Scholar
    • Export Citation
  • Sareer O, Bernstein N, Ahmad S, Umar S. 2016. Genetic, developmental and temporal variability in nitrate accumulation and nitrate reductase activity in the medicinal herb Andrographis paniculata. Pedosphere. 6:839–847.

    • Search Google Scholar
    • Export Citation
  • Saurabh S, Vidyarthi AS, Prasad D. 2014. RNA interference: concept to reality in crop improvement. Planta. 239:543–564.

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C. 2015. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J. 13:791–800. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma R, Priya P, Jain M. 2013. Modified expression of an auxin responsive rice CC type glutaredoxin gene affects multiple abiotic stress responses. Planta. 238(5):871–884. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimizu T, Motoyasu Y, Taiyun W, Hirohiko H, Toshihiro O. 2009. Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J. 7:24–32.

    • Search Google Scholar
    • Export Citation
  • Shimono M, Sugano S, Nakayama A, Jiang C, Ono K, Toki S, Takatsuji H. 2007. Rice WRKY45 plays a crucial role in benzothiadiazole inducible blast resistance. Plant Cell. 19:2064–2076.

    • Search Google Scholar
    • Export Citation
  • Shi-Yong S, Ying C, Jie C, Xiao D, Wen Z. 2011. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta. 234:331–345.

    • Search Google Scholar
    • Export Citation
  • Singh S, Giri MK, Singh PK, Siddiqui A, Nandi AK. 2013. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen induced cell death in transgenic rice plants. J Biosci. 38:1–10.

    • Search Google Scholar
    • Export Citation
  • Sinha SK. 2010. RNAi induced gene silencing in crop improvement. Physiol Mol Biol Plants. 16:321–332.

  • Socha P, Bernstein N, Rybansky L, Meszaros P, Galusova T, Spieß N, Libantova J, Moravcıkova J, Matuskova I. 2015. Cd Accumulation potential as a marker for heavy metal tolerance in soybean. Israel J Plant Sci. 62:160–166.

    • Search Google Scholar
    • Export Citation
  • Sun R, Du P, Jiang L, An D, Li Y. 2014. Heterologous expression of artificial miRNAs from rice dwarf virus in transgenic rice. Plant Cell Tiss Organ Cult. 116:353–360.

    • Search Google Scholar
    • Export Citation
  • Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G. 2012. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol. 159:1571–1581.

    • Search Google Scholar
    • Export Citation
  • Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G. 2012. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol. 160:2052–2063.

    • Search Google Scholar
    • Export Citation
  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature. 418:671–677.

    • Search Google Scholar
    • Export Citation
  • Tomari Y, Zamore PD. 2005. Perspective: machines for RNAi. Genes Dev. 19:517–529.

  • Tyagi H, Rajasubramaniam S, Rajam MV, Dasgupta I. 2008. RNA-interference in rice against rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Res. 17:897–904.

    • Search Google Scholar
    • Export Citation
  • Uraguchi S, Kamiya T, Clemens S, Fujiwara F. 2014. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiol Plant. 151:339–347.

    • Search Google Scholar
    • Export Citation
  • Uraguchi S, Kamiya T, Sakamoto T, Kasaia K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. 2011. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci. 108:20959–20964.

    • Search Google Scholar
    • Export Citation
  • Vanavichit A, Tragoonrung S, Toojinda T, Wanchana S, Kamolsukyunyong W, Arikit S. 2008. Transgenic plants with reduced expression of amadh2 and elevated levels of 2-Acetyl-1-pyrroline. US patent: 7319181B2.

    • Search Google Scholar
    • Export Citation
  • Vito MB, Fitzgerald S, Bird AR, Gidley MJ, Flanagan BM, Larroque O, Resurreccion AP, Hunter KC, Jobling SA, Morell MK, Rahman S. 2011. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. J Exp Bot. 62(14):4927–4941. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang C, Wei Q, Zhang K, Wang L, Liu F, Zhao L, Tan Y, Yan H, Yu J, Sun C, et al. 2013. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One. 8(12):e81849. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol. 65:799–815.

    • Search Google Scholar
    • Export Citation
  • Wang J, Hu J, Qian Q, Xue HX. 2012. LC2 and OsVIL2 promote rice flowering by photoperiod-induced epigenetic silencing of OsLF. Mol Plant. 6(2):514–527. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, Wang W, Chen H, Wei C, Ye X, et al. 2015. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS One. 10:e0122755. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang Q, Hillwig ML, Okada K, Yamazaki K, Wu Y, Swaminathan S, Yamane H, Peters RJ. 2012. Characterization of CYP76M5–8 indicates metabolic plasticity within a plant biosynthetic gene cluster. J Biol Chem. 287:6159–6168.

    • Search Google Scholar
    • Export Citation
  • Wang Y, Zha X, Zhang S, Xiaoyin Q, Xianxin D, Fan S, Yang J. 2010. Down-regulation of the OsPDCD5 gene induced photoperiod-sensitive male sterility in rice. Plant Sci. 178:221–228.

    • Search Google Scholar
    • Export Citation
  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P. 2008. Highly specific gene silencing by artificial miRNAs in rice. PLoS One. 3:e1829. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinthal D, Tovkach A, Zeevi V, Tzfira T. 2010. Genome editing in plant cells by zinc finger nucleases. Trends in Plant Sci. 15:308–321.

    • Search Google Scholar
    • Export Citation
  • Wright DA, Li T, Yang B, Spalding MH. 2014. TALEN-mediated genome editing: prospects and perspectives. Biochem J. 462:15–24.

  • Xia G. 2013. Repression of lignin synthesis in rice by C4H and 4CL using RNAi. Int J Biosci Biochem Bioinfo. 3(3):226–228. doi:

  • Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L. 2003. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol. 52:957–966.

    • Search Google Scholar
    • Export Citation
  • Xiao W, Liu H, Li Y, Li X, Xu C, Long M, Wang S. 2009. A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS One. 4(2):e4603. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie K, Yang Y. 2013. RNA-guided genome editing in plants using a CRISPR–Cas System. Mol Plant. 6:1975–1983.

  • Xu FQ, Li XR, Ruan YL. 2008. RNAi-mediated suppression of hexokinase gene OsHXK10 in rice leads to non-dehiscent anther and reduction of pollen germination. Plant Sci. 175:674–684.

    • Search Google Scholar
    • Export Citation
  • Xu H, Zhang J, Zeng J, Jiang L, Liu E, Peng C, He Z, Peng X. 2009. Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J Exp Bot. 60:1799–1809.

    • Search Google Scholar
    • Export Citation
  • Xu M, Zhu L, Shou H, Wu P. 2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 46:1674–1681.

    • Search Google Scholar
    • Export Citation
  • Xu R, Li H, Qin R, Li J, Qiu C, Yang Y, Ma H, Li L, Wei P, Yang J. 2015. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Scientific Reports. 5:11491.

    • Search Google Scholar
    • Export Citation
  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G. 2011. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ. 34:1360–1372.

    • Search Google Scholar
    • Export Citation
  • Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. 2014. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang M, Sun F, Wang S, Qi W, Wang Q, Dong X, Yang J, Luo X. 2013. Down-regulation of OsPDCD5, a homolog of the mammalian PDCD5, increases rice tolerance to salt stress. Mol Breed. 31:333–346.

    • Search Google Scholar
    • Export Citation
  • Ye N, Yang G, Chen Y, Zhang C, Zhang J, Peng X. 2013. Two hydroxypyruvate reductases encoded by OsHPR1 and OsHPR2 are involved in photorespiratory metabolism in rice. J Int Plant Biol. 56(2):170–180. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi AN, Cermak T, Hoshino T, Sugimoto K, Saika H, Mori A, Osakabe K, Hamada M, Katayose Y, Starker C, et al. 2015. A defect in DNA ligase 4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol. 170(2):653–666. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan J, Chen D, Ren Y, Zhang X, Zhao J. 2008. Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol. 146:1637–1650.

    • Search Google Scholar
    • Export Citation
  • Zha W, Peng X, Chen R, Du B, Zhu L, He G. 2011. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One. 6(5):e20504. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang H, Niu X, Liu J, Xiao F, Cao S, Liu Y. 2013. RNAi-directed down regulation of Vacuolar H+-ATPase subunit a results in enhanced stomatal aperture and density in rice. PLoS One. 8(7):e69046. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotech J. 12:797–807.

    • Search Google Scholar
    • Export Citation
  • Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, et al. 2010. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J Integr Plant Biol. 52:626–638.

    • Search Google Scholar
    • Export Citation
  • Zhang W, Wan B, Zhou F, Chen H, Li X, Lin Y. 2014. Up and down-regulated expression of OsCPK25/26 results in increased number of stamens in rice. Plant Mol Biol Rep.32:1114–1128. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang YM, Yan YS, Wang L, Yan K, Xiao N, Liu YF, Fu YP, Sun ZX, Fang RX, Chen XY. 2012. A novel rice gene, NRR responds to macronutrient deficiency and regulates root growth. Mol Plant. 5:63–72.

    • Search Google Scholar
    • Export Citation
  • Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, Wang S, Deng XW, Li S. 2012. OsELF3-1, an ortholog of arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One. 7(8):e43705. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou GX, Qi JF, Ren N, Cheng JA, Erb M, Mao B, Lou Y. 2009. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J. 60:638–648.

    • Search Google Scholar
    • Export Citation
  • Zhou H, Liu B, Weeks D, Spalding M, Yang B. 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 42(17):10903–10914. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS, Huang S, Liu S, Cruz CV, Frommer WB, et al. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 82:632–643.

    • Search Google Scholar
    • Export Citation
  • Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. 2013. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol. 13:132.

    • Search Google Scholar
    • Export Citation
  • Zhou Y, Yuan Y, Fuhai Y, Man W, Huan Z, Minghong G, Guohua L. 2012. RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol Lett. 34:965–972.

    • Search Google Scholar
    • Export Citation
  • Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, Li Y. 2005. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol. 139:1935–1945.

    • Search Google Scholar
    • Export Citation
  • Zou L, Sun X, Zhang Z, Liu P, Wu J, Tian C, Qiu J, Lu T. 2011. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol. 156:1589–1602.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 227 179 10
Full Text Views 33 11 0
PDF Downloads 27 4 0