Deciphering the mode of interactions of nanoparticles with mung bean (Vigna radiata L.)

In: Israel Journal of Plant Sciences

ABSTRACT

An investigation was undertaken to analyze the effect of four different metal nanoparticles (ZnO, SiO2, Fe2O3 and MgO) on the growth of mung bean (Vigna radiata L.) plants. Agar overlay method using seedling nutrient medium containing 50 and 100 mg l−1 of each of the nanoparticles (NPs) was used for the study undertaken for 28 days. A concentration-dependent increase in fresh weight and carotenoid concentration was recorded in MgO NPs. ZnO NPs showed the highest enhancement in leaf peroxidase activity over control. Heavy metal analysis by ICP-MS of seedlings at both concentrations of NPs for 28 days showed a twofold increase at the higher concentrations with ZnO and Fe2O3 NPs. Visual and SEM observations of the MgO NP-treated roots revealed an increase in density and fibrosity, with unique globular structures on the surface of the roots. MgO nanoparticles–mung bean interaction can be a model system for investigating beneficial interactions of nanoparticles with plants.

  • Alidoust D, Isoda A. 2013. Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max L. Merr.): foliar spray versus soil amendment. Acta Physiol Plantar. 35:3365–3375.

    • Search Google Scholar
    • Export Citation
  • Aravind P, Prasad MNV. 2003. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem. 41:391–397.

    • Search Google Scholar
    • Export Citation
  • Bernstein N, Shoresh M, Xu Y, Huang B. 2010. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs. roots during cell development. Free Radical Bio Med. 49:1161–1171.

    • Search Google Scholar
    • Export Citation
  • Bray TM, Bettger WJ. 1990. The physiological role of zinc as an antioxidant. Free Radical Bio Med. 8:281–291.

  • Buzea C, Pacheco II, Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2:MR17–71.

  • Cheng S. 2003. Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut. 10:256–264.

  • Clement L, Hurel C, Marmier N. 2013. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere. 90:1083–1090.

    • Search Google Scholar
    • Export Citation
  • Cossins D. 2014 Mar 16. Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The Scientist, News & Opinion; [cited 2016 Jan 7]. Available from: http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions/

    • Export Citation
  • Feizi H, Kamali M, Jafari L, Moghaddam PR. 2013. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 91:506–511.

    • Search Google Scholar
    • Export Citation
  • Giordani T, Fabrizi A, Guidi L, Natali L, Giunti G, Ravasi F, Cavallini A, Pardossi A. 2013. Response of tomato plants exposed to treatment with nanoparticles. EQA-Int J Environ Qual. 8:27–38.

    • Search Google Scholar
    • Export Citation
  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, et al. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. 13:400–408.

    • Search Google Scholar
    • Export Citation
  • Jensen HL. 1942. Nitrogen fixation in leguminous plants. II. Is symbiotic nitrogen fixation influenced by Azotobacter. Proc Linn Soc NSW. 67:205–212.

    • Search Google Scholar
    • Export Citation
  • Khan MR, Rizvi TF. 2014. Nanotechnology: scope and application in plant disease management. Plant Pathol J. 13:214–231.

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. 2012. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 35:64–70.

    • Search Google Scholar
    • Export Citation
  • Koizumi M, Kikuchi K, Isobe S, Ishida N, Naito S, Kano H. 2008. Role of seed coat in imbibing soybean seeds observed by micro-magnetic resonance imaging. Ann Bot. 102:343–352.

    • Search Google Scholar
    • Export Citation
  • Kravchik M, Bernstein N. 2013. Effects of salinity on the transcriptome of growing maize leaf cells points at differential involvement of the antioxidative response in cell growth restriction. BMC Genomics. 16:14:24.

    • Search Google Scholar
    • Export Citation
  • Lee WM, An YJ, Yoon H, Kweon HS. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiates) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem. 27:1915–1921.

    • Search Google Scholar
    • Export Citation
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L, editors. Plant cell membranes. Methods in Enzymology 148. New York: Academic Press; p. 350–382.

    • Search Google Scholar
    • Export Citation
  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A. 2010. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 408:3053–3061.

    • Search Google Scholar
    • Export Citation
  • Mahajan P, Dhoke SK, Khanna AS. 2011. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiate) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol. 2011:696535. 7 pages. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair PMG, Chung IM. 2015. Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiol Plantar. 37:1–11.

    • Search Google Scholar
    • Export Citation
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867–880.

    • Search Google Scholar
    • Export Citation
  • OECD (Organization for Economic Cooperation and Development). 1984. Terrestrial plants, growth test. OECD Guidelines for Testing of Chemicals 208. Paris: OECD.

    • Search Google Scholar
    • Export Citation
  • Parisi C, Vigani M, Rodríguez-Cerezo E. 2015. Agricultural nanotechnologies: what are the current possibilities? Nano Today. 10:124–127.

    • Search Google Scholar
    • Export Citation
  • Pokhrel LR, Dubey B. 2013. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ. 452:321–332.

    • Search Google Scholar
    • Export Citation
  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr. 35:905–927.

    • Search Google Scholar
    • Export Citation
  • Qi M, Liu Y, Li T. 2013. Nano-TiO2 improves the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res. 156:323–328.

    • Search Google Scholar
    • Export Citation
  • Raliya R, Tarafdar JC. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res. 2:48–57.

    • Search Google Scholar
    • Export Citation
  • Raspe S. 1997. Fine-root development. In: Hüttl RF, Schaaf W, editors. Magnesium deficiency in forest ecosystems. Dordrecht: Springer; p. 309–332.

    • Search Google Scholar
    • Export Citation
  • Sedghi M, Hadi M, Toluie SG. 2013. Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Univ Timisoara Ser Biol. XVI:73–78.

    • Search Google Scholar
    • Export Citation
  • Siddiqui M.H, Al-Whaibi MH, Faisal M, Al Sahli AA. 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem. 33:2429–2437.

    • Search Google Scholar
    • Export Citation
  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir. 18:6679–6686.

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I. 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res. 3:257–262.

    • Search Google Scholar
    • Export Citation
  • Verma JP, Singh V, Yadav J. 2011. Effect of copper sulphate on seed germination, plant growth and peroxidase activity of mung bean (Vigna radiata). Int J Bot. 7:200–204.

    • Search Google Scholar
    • Export Citation
  • Vincent JM, Waters LM. 1953. The influence of the host on competition amongst clover root-nodule bacteria. J Gen Microbiol. 9:357–370.

    • Search Google Scholar
    • Export Citation
  • Watanabe S, Fujiwara T, Yoneyama T, Hayashi H. 2001. Effects of silicon nutrition on metabolism and translocation of nutrients in rice plants. In: Horst WJ, Schenk MK, Burket A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Romheld V, Sattelmacher B, et al., editors. Plant nutrition. Vol. 92. Dordrecht: Springer; p. 174–175.

    • Search Google Scholar
    • Export Citation
  • Xie Z, Song F, Xu H, Shao H, Song R. 2014. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Sci World J. 2014:718716. 6 pages. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng L, Hong F, Lu S, Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res. 104:83–91.

    • Search Google Scholar
    • Export Citation
  • Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor. 10:713–717.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 127 95 14
Full Text Views 21 1 0
PDF Downloads 8 1 0