Pumpkins and squash, Cucurbita species, are valued horticultural products almost everywhere. They have been cultivated and subjected to consumer-oriented selection for thousands of years. Under this consumer orientation, they have been improved culinarily and diversified into the wonderful array of fruit sizes, shapes, and colors that are seen today. Besides their value as food items, pumpkins and squash are associated by people with abundance, warmth, sexuality, and life itself. My current objective is to provide a succinct perspective on the process of consumer-oriented exploitation of pumpkin and squash genetic resources. I briefly review the etymology, taxonomy and gross morphology of Cucurbita plants. A view is presented of how gathering, nurturing, domestication and cultivation of Cucurbita, species-specific and consumer-driven, maintained some of the parallels among species but also magnified the phenotypic differences among them. At greater length are considered the differences in resource allocation required for the preferential consumer-driven production of mature versus young fruits. Environmental effects, abiotic and biotic, are briefly mentioned, as are some of the potential benefits of biotechnology, genetic engineering, mapping, genomics, and gene editing as cognates for breeding. Finally, I consider the processes and needs for collection, maintenance, characterization, and availability of Cucurbita genetic resources and the dangers imposed by under-informed administrators in academia and cavalier governmental regulatory statutes toward future consumer-oriented improvement of pumpkins and squash.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Andres T.C. (1987). Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit. Genet. Coop. Rep. 10: 69–71.
Andres T.C. (1990). Biosystematics, theories on the origin, and breeding potential of Cucurbita ficifolia. In: Bates D.M. , Robinson R.W. , Jeffrey C. , eds., Biology and Utilization of the Cucurbitaceae. Ithaca: Comstock, pp. 102–119.
Andres T.C. (2000). Searching for Cucurbita germplasm: collecting more than seeds. Acta Hort 510: 191–198.
Andres T.C. (2004). Diversity in tropical pumpkin (Cucurbita moschata): a review of infraspecific classifications. In: Lebeda A. , Paris H.S. , eds., Progress in Cucurbit Genetics and Breeding Research, Proceedings of Cucurbitaceae 2004. Olomouc, Czech Republic: Palacky University, pp. 107–112.
Andres T.C. , Robinson R.W. (2002). Cucurbita ecuadorensis, an ancient semi-domesticate with multiple disease resistance and tolerance to some adverse growing conditions. In: Maynard D.N. , ed., Cucurbitaceae 2002. Alexandria, VA: ASHS Press, pp. 95–99.
Andrews A.C. (1958). Melons and watermelons in the classical era. Osiris 12: 368–375.
Avila-Sakar G. , Krupnick G.A. , Stephenson A.G. (2001). Growth and resource allocation in Cucurbita pepo ssp. texana: effects of fruit removal. Int. J. Plant Sci. 162: 1089–1095.
Azevedo-Meleiro C.H. , Rodriguez-Amaya D.B. (2007). Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. J. Agric. Food Chem. 55: 4027–4033.
Babadoost M. (2000). Outbreak of phytophthora foliar blight and fruit rot in processing pumpkin fields in Illinois. Plant Dis. 84: 1345.
Babadoost M. , Zitter T.A. (2009). Fruit rots of pumpkin. Plant Dis. 93: 772–782.
Baggett J.R. (1972). Open growth habit in summer squash. HortScience 7: 288.
Baggett J.R. , Kean D. (1990). ‘Sugar Loaf’ and ‘Honey Boat’ winter squashes. HortScience 25: 369–370.
Bailey L.H. (1943). Species of Cucurbita. Gentes Herbarum 6: 266–322.
Bisognin D.A. (2002). Origin and evolution of cultivated cucurbits. Cienc. Rural 32: 715–723.
Blanca J. , Cañizares J. , Roig C. , Ziarsolo P. , Nuez F. , Pico B. (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12: 104.
Blanca J. , Montero Pau J. , Esteras C. , Ziarsolo P. , Bombarely A. , Muller L. , Marti C. , Roig C. , Monforte A. , Gomez P. , Jamilena M. , Cañizares J. , Pico B. (2015). The genome of Cucurbita pepo, a tool for breeders. In: Gomez Guillamon M.L. , Perez Alfocea F. , eds., Cucurbits 2015, Programme and Book of Abstracts. Leuven, Belgium: International Society for Horticultural Science, p. 20.
Carbonell M.E. , Wessel-Beaver L. , Varela F. , Luciano B. (1990). Pumpkin (Cucurbita moschata) breeding priorities based on a survey among Puerto Rican consumers. J. Agric. Univ. Puerto Rico 74: 229–236.
Chavez D.J. , Kabelka E.A. , Chaparro J.X. (2011). Screening of Cucurbita moschata Duchesne germplasm for crown rot resistance to Floridian isolates of Phytophthora capsici Leonian. HortScience 46: 536–540.
Cho M.C. , Om Y.H. , Huh Y.C. , Mok I.G. , Park H.G. (2003). Two Oriental squash varieties resistant to powdery mildew bred through interspecific crosses. Cucurbit Gene.t Coop. Rep. 26: 40–41.
Clough G.H. , Hamm P.B. (1995). Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis. 79: 1107–1109.
Cohen S. , Ben-Joseph R. (2000). The dynamics of viruses affecting cucurbits in Israel: 40 years since 1960. Acta Hort. 510: 321–325.
Corrigan V.K. , Hurst P.L. , Potter J.F. (2001). Winter squash (Cucurbita maxima) texture: sensory, chemical, and physical measures. New Zealand J. Crop Hort. Sci. 29: 111–124.
Cowan C.W. (1997). Evolutionary changes associated with the domestication of Cucurbita pepo. In: K.J. Gremillion KJ, ed., People, Plants, and Landscapes: Studies in Paleoethnobotany. Tuscaloosa: University of Alabama Press, pp 63–85.
Coyne D.P. , Hill, R.M. (1976). ‘Butternut Patriot’ squash. HortScience 11: 618.
Culpepper C.W. (1937). Composition of summer squash and its relationship to variety, stage of maturity, and use as a food product. Food Res. 2: 289–303.
Culpepper C.W. , Moon H.H. (1945). Differences in the composition of the fruits of Cucurbita varieties at different ages in relation to culinary use. J. Agric. Res. 71: 111–136.
Cutler H.C. , Whitaker T.W. (1956). Cucurbita mixta, Pang., its classification and relationships. Bull. Torrey Bot. Club 83: 253–260.
Cutler H.C. , Whitaker T.W. (1961). History and distribution of the cultivated cucurbits in the Americas. Amer. Antiq. 26: 469–485.
Decker-Walters D.S. , Staub J.E. , Chung S.M. , Nakata E. , Quemada, HD. (2002). Diversity in free-living populations of Cucurbita pepo (Cucurbitaceae) as assessed by random amplified polymorphic DNA. Syst. Bot. 27: 19–28.
Dillehay T.D. , Rossen J. , Andres T.C. , Williams, D.E .(2007). Preceramic adoption of peanut, squash and cotton in northern Peru. Science 316: 1890–1893.
Duchesne A.N. (1786). Essai sur l’histoire naturelle des courges. Paris: Panckoucke.
El-Keblawy A. , Lovett-Doust J. (1996). Resource re-allocation following fruit removal in cucurbits: patterns in two varieties of squash. New Phytol. 133: 583–593.
Esquinaz-Alcazar J.T. , Gulick P.J. (1983). Genetic resources of Cucurbitaceae. Rome: IBPGR Secretariat.
Esteras C. , Gomez P. , Monforte A.J. , Blanca J. , Vincente-Dolera N. , Roig C. , Nuez F. , Pico B. (2012a). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 13: 80.
Ferriol M. , Pico B. (2008). Pumpkin and winter squash. In: Prohens J. , Nuez F. , eds., Vegetables I, Handbook of Plant Breeding. New York: Springer, pp. 317–349.
Formisano G. , Paris, H.S. , Frusciante L. , Ercolano M.R. (2010). Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet. Resour. 8: 198–203.
Fowler C. (2008). The Svalbard seed vault and crop security. Bioscience 58: 190.
Francis F.J. (1962). Relationship between flesh color and pigment content in squash. Proc. Am. Soc. Hort. Sci. 81: 408–414.
Fritz G.J. (1994). Precolumbian Cucurbita argyrosperma ssp. argyrosperma (Cucurbitaceae) in the eastern woodlands of North America. Econ. Bot. 48: 280–292.
Fuchs M. , Gonsalves D. (2007). Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu. Rev. Phytopathol. 45: 173–202.
Fuchs M. , Tricoli D.M. , Carney K.J. , Schesser M. , McFerson J.R. , Gonsalves D. (1998). Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis. 82: 1350–1356.
Gaba V. , Zelcer, A. , Gal-On A. (2004). Cucurbit biotechnology—the importance of virus resistance. In Vitro Cell Dev. Biol.–Plant40: 346–358.
Gal-On A. (2007). Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol. Plant Pathol. 8: 139–150.
Gebhardt S.E. , Thomas R.G. (2002). Nutritive value of foods. USDA, ARS Home and Garden Bulletin 72.
Gisbert C. , Pico B. , Nuez F. (2010–2011). Regeneration in selected Cucurbita spp. germplasm. Cucurbit Genet. Coop. Rep. 33–34: 53–54.
Goldman A. (2004). The Compleat Squash. New York: Artisan.
Gong L. , Stift G. , Kofler R. , Pachner M. , Lelley T. (2008a). Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor. Appl. Genet. 117: 37–48.
Gong L. , Pachner M. , Kalai K. , Lelley T. (2008b). SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome 51: 878–887.
Gong L. , Paris H.S. , Nee M.H., Stift, G. , Pachner M. , Vollmann J. , Lelley, T (2012). Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash gourd) as revealed by simple sequence repeat polymorphisms. Theor. Appl. Genet. 124: 875–891.
Gong L. , Paris, H.S. , Stift G. , Pachner M. , Vollmann J. , Lelley T. (2013). Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis. Genet. Resour. Crop Evol. 60: 1531–1546.
Guzzon F. , Ardenghi N.M.G. (2018). Could taxonomic misnaming threaten the ex situ conservation and the usage of plant genetic resources? Biodiversity Conserv. 27: 1157–1172.
Haber E.S. , Argue C.W. (1927). The chemical composition of the Des Moines (Table Queen) squash as affected by the age of the specimens. Proc. Am. Soc. Hort. Sci. 23: 203–207.
Itle R.A. , Kabelka E.A (2009). Correlation between L*a*b* color space values and carotenoid content in pumpkins and squash. HortScience 44: 633–637.
Jahn M. , Munger H.M. , McCreight J.D. (2002) Breeding cucurbit crops for powdery mildew resistance. In: Bélanger R.R. , Bushnell W.R. , Dik A.J. , Carver T.L.W. , eds., The Powdery Mildews, a Comprehensive Treatise. St. Paul, MN: APS Press, pp. 239–248.
Janick J. , Paris H.S. (2006). The cucurbit images (1515–1518) of the Villa Farnesina, Rome. Ann. Bot. 97: 165–176.
Kiss-Baba E. , Panczel S. , Simonyi K. , Bisztray G.D. (2010). Investigations on the regeneration ability of squash cultivars. Acta Agron. Hung. 58:159–166.
Kurtar, E.S., Sari N. , Abak K. (2002). Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica 127: 335–344.
Lebeda A. , Widrlechner M.P. , Staub J. , Ezura H. , Zalapa J. , Křistkova E. (2007). Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita spp., Citrullus spp.). In: Singh R.J. , ed., Genetic Resources, Chromosome Engineering, and Crop Improvement , Vol.3. Boca Raton, FL: CRC Press, pp. 271–376.
Lecoq H. , Pitrat M. , Clément M. (1981). Identification et caractérisation d’un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie 1: 827–834.
Lecoq H. , Wisler G. , Pitrat M. (1998). Cucurbit viruses: the classics and the emerging. In: McCreight J.D. , ed., Cucurbitaceae ’98. Alexandria, VA: ASHS Press, pp. 126–142.
Lira R. , Montes S. (1994). Cucurbits (Cucurbita spp.). In: Hernandez J.E. , Leon J. , eds., Neglected Crops: 1492 from a Different Perspective. Rome: FAO, pp. 63–77.
Lisa V. , Boccardo G. , D’Agostino, G., Dellavalle G. , d’Aquilio, M. (1981). Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71: 667–672.
Lisa V. , Lecoq, H. (1984). Zucchini yellow mosaic virus. In: Descriptions of Plant Viruses, No. 282. Kew, UK: Commonwealth Mycological Institute and Association of Applied Biologists.
Lorenz O.A. (1949). Growth rates and chemical composition of fruits of four varieties of summer squash. Proc. Am. Soc. Hort. Sci. 54: 385–390.
Loy J.B. (2004). Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Crit. Rev Plant Sci. 23: 337–363.
Loy J.B. (2012). Breeding squash and pumpkins. In: Wang Y.-H. , Behera T.K. , Kole C. , eds., Genetics, Genomic and Breeding of Cucurbits. Boca Raton: CRC Press, pp. 93–139.
Lust, T.A, Paris H.S. (2016). Italian horticultural and culinary records of summer squash (Cucurbita pepo, Cucurbitaceae) and emergence of the zucchini in nineteenth-century Milan. Ann. Bot. 118: 53–69.
MacGillivray J.H. , Hanna G.C. , Minges P.A. (1942). Vitamin, protein, calcium, iron, and calorie yield of vegetables per acre and per acre man-hour. Proc. Am. Soc. Hort. Sci. 41: 293–297.
Martinez C. , Manzano S. , Megias Z. , Garrido D. , Pico B. , Jamilena M. (2014). Sources of parthenocarpy for zucchini breeding: relationship with ethylene production and sensitivity. Euphytica 200: 349–362.
Maynard D. , Elmstrom G.W. , Talcott S.T. , Carle R.B. (2002). ‘El Dorado’ and ‘La Estrella’: compact tropical pumpkin hybrids. HortScience 37: 831–833.
McCollum T.G. (1990). Gene B influences susceptibility to chilling injury in Cucurbita pepo. J. Am. Soc. Hort. Sci. 115: 618–622.
McGrath M.T. (2002). Alternatives to the protectant fungicide chlorothalonil evaluated for managing powdery mildew of cucurbits. In: Maynard D.N. , ed., Cucurbitaceae 2002. Alexandria, VA: ASHS Press, pp. 213–221.
Mencarelli F. , Anelli, G. , Tesi R. (1982). Idoneità alla conservazione di alcune cultivars di carciofo e di zucca da zucchini. Frutticoltura 44: 47–50.
Merrick L.C. (1990). Systematics and evolution of a domesticated squash, Cucurbita argyrosperma, and its wild and weedy relatives. In: Bates D.M. , Robinson R.W. , Jeffrey C. , eds., Biology and Utilization of the Cucurbitaceae. Ithaca: Comstock Publishing, pp. 77–95.
Merrick L.C. (1995). Squashes, pumpkins and gourds. In: Smartt J. , Simmonds N.W. , eds., Evolution of Crop Plants, 2nd ed. London: Longman Scientific and Technical, pp. 97–105.
Merrick L.C. , Bates D.M. (1989). Classification and nomenclature of Cucurbita argyrosperma. Baileya 23: 94–102.
Merrow S.B. , Hopp R.J. (1961). Associations between the sugar and starch content of and the degree of preference for winter squashes. J. Agri. Food Chem. 9: 321–326.
Montero-Pau J. , Esteras C. , Blanca J. , Ziarsolo P. , Cañizares J. , Pico B. (2017). Genetics and genomics of Cucurbita spp. In: Grumet R. , Garcia-Mas J. and Katzir N. , eds., Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models 20. Cham, Switzerland: Springer International, pp. 211–227.
Murkovic M. , Mülleder U. , Neuteufl H. (2002). Carotenoid content in different varieties of pumpkins. J. Food Comp. Anal. 15: 633–638.
Murphy E.F. , Hepler P.R. , True R.H. (1966). An evaluation of the sensory quality of inbred lines of squash (Cucurbita maxima). Proc. Am. Soc. Hort. Sci. 89: 483–490.
Nameth S.T. , Dodds, J.A. , Paulus A.O. , Laemmlen, FF. (1986). Cucurbit viruses of California: an ever-changing problem. Plant Dis. 70: 8–12.
Naudin C. (1856). Nouvelles recherches sur les caractères spécifiques et les variétés des plantes du genre Cucurbita. Ann. Sci. Nat. Bot., ser.4 6: 5–73.
Nee M. (1990). The domestication of Cucurbita (Cucurbitaceae). Econ. Bot. 44 (3, suppl.): 56–68.
Norrman R. , Haarberg J. (1980). Nature and Language. A Semiotic Study of Cucurbits in Literature. London: Routledge & Kegan Paul.
Pachner M. , Paris, H.S., Lelley T. (2009). Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J. Hered. 102: 330–335.
Pachner M. , Paris H.S. , Winkler J. , Lelley T. (2015). Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breed. 134: 121–128.
Padley Jr, L.D ., Kabelka E.A. , Roberts P.D. , French R. (2008). Evaluation of Cucurbita pepo accessions for crown rot resistance to isolates of Phytophthora capsici. HortScience 43: 1996–1999.
Padley Jr, L.D. , Kabelka E.A. , Roberts P.D. (2009). Inheritance of resistance to crown rot caused by Phytophthora capsici in Cucurbita. HortScience 44: 211–213.
Paris H.S. (1986). A proposed subspecific classification for Cucurbita pepo. Phytologia 61: 133–138.
Paris H.S. (1988). Complementary genes for orange fruit flesh color in Cucurbita pepo. HortScience 23: 601–603.
Paris H.S. (1994). Genetic analysis and breeding of pumpkins and squash for high carotene content. In: Linskens H.F. , Jackson J.F. , eds., Modern Methods of Plant Analysis , Vol.16. Vegetables and Vegetable Products. Berlin: Springer Verlag, pp. 93–115.
Paris H.S. (1996). Summer squash: history, diversity, and distribution. HortTechnology 6: 6–13.
Paris, H.S. (2000). History of the cultivar-groups of Cucurbita pepo. Hort. Revs. 25: 71–170.
Paris H.S. (2001) Characterization of the Cucurbita pepo collection at the Newe Ya‘ar Research Center, Israel. Plant Genet. Resourc Newsl. 126: 41–45.
Paris H.S. (2007) The Drawings of Antoine Nicolas Duchesne for His Natural History of the Gourds. In: Érard C. , ed., Les planches et les mots. Paris: Muséum National d’Histoire Naturelle.
Paris H.S. (2008). Summer squash. In: Prohens J. , Nuez F. , eds., Handbook of Plant Breeding, Vegetables I. New York: Springer, pp. 351–379.
Paris H.S. (2010). Multiple flowering as an adaptation of summer squash for growing in protected culture. In: Thies J.A. , Kousik S. , Levi A. , Cucurbitaceae 2010 Proceedings. Alexandria VA: American Society for Horticultural Science, pp. 88–90.
Paris H.S. (2015). Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann. Bot. 116: 133–148.
Paris H.S. (2017a). Genetic resources of pumpkins and squash, Cucurbita spp. In: Grumet R. , Garcia-Mas J. , Katzir N. , eds., Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models 20. Cham, Switzerland: Springer International, pp. 111–154.
Paris H.S. (2017b). United States Patent No. 9,826,690 B2. November 28, 2017.
Paris H.S. , Brown. R.N. (2005). The genes of pumpkin and squash. HortScience 40: 1620–1630.
Paris H.S. , Cohen S. (2000). Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann. Appl. Biol. 136: 209–214.
Paris H.S. , Cohen R. (2002). Powdery mildew-resistant summer squash hybrids having higher yields than their susceptible, commercial counterparts. Euphytica 124: 121–128.
Paris H.S. , Edelstein M. (2001). Same gene for bush growth habit in Cucurbita pepo subsp. pepo as in C. pepo subsp. ovifera. Cucurbit Genet. Coop. Rep. 24: 80–81.
Paris H.S. , Hanan. A. (2010). Single recessive gene for multiple flowering in summer squash. HortScience 45: 1643–1644.
Paris H.S. , Nerson H. (2003). Seed dimensions in the subspecies and cultivar-groups of Cucurbita pepo. Genet. Resourc. Crop Evol. 50: 615–625.
Paris H.S. , Daunay M.C. , Pitrat M. , Janick J. (2006). First known image of Cucurbita in Europe 1503–1508. Ann. Bot. 98: 41–47.
Paris H.S. , Strachan J. , Frobish, M. , Johnson, W.C, Gusmini G. (2007). New plant variety protection (PVP) forms for pumpkin/squash/gourd. Cucurbit Genet. Coop. Rep. 30: 33–34, 71–93.
Paris H.S ., Lebeda A. , Křistkova E. , Andres. T.C. , Nee M.H. (2012). Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 66: 71–90.
Piperno D.R. , Stothert, K.E. (2003). Phytolith evidence for early Holocene Cucurbita domestication in Southwest Ecuador. Science 299: 1054–1057.
Provvidenti R. (1990). Viral diseases and genetic sources of resistance in Cucurbita species. In: Bates D.M. , Robinson R.W. , Jeffrey C. , eds., Biology and Utilization of the Cucurbitaceae. Ithaca: Comstock, pp. 427–435.
Provvidenti R. (1997). New American summer squash cultivars possessing a high level of resistance to a strain of zucchini yellow mosaic virus from China. Cucurbit Genet. Coop. Rep. 20: 57–58.
Robinson R.W. , Decker-Walters D.S. (1997). Cucurbits. Wallingford: CAB International.
Robinson R.W. , Provvidenti R. (1997). Differential response of Cucurbita pepo cultivars to strains of zucchini yellow mosaic virus. Cucurbit Genet. Coop. Rep. 20: 58–59.
Sanjur O.I. , Piperno D.R. , Andres T.C. , Wessel-Beaver L. (2002). Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc. Natl. Acad. Sci. USA 99: 535–540.
Schaefer H. , Renner S.S. (2011). Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon. 60: 122–138.
Schaffer A.A. , Boyer C.D. , Paris H.S. (1986a). Inheritance of rind lignification and warts in Cucurbita pepo L. and a role for phenylalanine ammonia lyase in their control. Z. Pflanzenzücht. 96: 147–153.
Schaffer A.A. , Paris H.S. , Ascarelli I.M. (1986b). Carotenoid and starch conent of near-isogenic B+B+ and BB genotypes of Cucurbita. J. Am. Soc. Hort. Sci. 111: 780–783.
Schales F.D. , Isenberg F.M. (1963). The effect of curing and storage on chemical composition and taste acceptability of winter squash. Proc. Am. Soc. Hort. Sci. 83: 667–674.
Shalaby T.A. (2007). Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Scientia Hort. 115: 1–6.
Sherman M. , Paris H.S. , Allen J.J. (1987). Storability of summer squash as affected by gene B and genetic background. HortScience 22: 920–922.
Sinnott E.W. , Durham G.B. (1929). Development history of the fruit in lines of Cucurbita pepo differing in fruit shape. Bot. Gaz. 87: 411–421.
Smith B.D. (1997). The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 276: 932–934.
Stephenson A.G. , Devlin B. , Horton J.B. (1988). The effects of seed number and prior fruit dominance on the pattern of fruit production in Cucurbita pepo (zucchini squash). Ann. Bot. 62: 653–661.
Tapley W.T. , Enzie W.D. , van Eseltine G.P. (1937). The Vegetables of New York , Vol.1 , Part IV. Albany: J. B. Lyon.
Teppner H. (2000). Cucurbita pepo (Cucurbitaceae)—history, seed coat types, thin coated seeds and their genetics. Phyton 40: 1–42.
Tricoli D.M. , Carney K.J. , Russell P.F. , Quemada H.D. , McMaster R.J. , Reynolds J.F. , Deng R.Z. (2002). Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. US Patent 6,337,431 .
Trumbull J.H. (1876). Vegetables cultivated by the American Indians. Bull. Torrey Bot. Club 6: 69–71.
Vinter V. , Křistkova A. , Lebeda A. , Křistkova E. (2004). Descriptor lists for genetic resources of the genus Cucumis and cultivated species of the genus Cucurbita. In: Lebeda A. , Paris H.S. , eds., Progress in Cucurbit Genetics and Breeding Research, Proceedings of Cucurbitaceae 2004. Olomouc, Czech Republic: Palacky University, pp. 95–99.
Wessel-Beaver L. (2000). Evidence for the center of diversity of Cucurbita moschata in Colombia. Cucurbit Genet. Coop. Rep. 23: 54–55.
Wessel-Beaver L. (2005). Cultivar and germplasm release—release of ‘Soler’ tropical pumpkin. J. Agric. U.Puerto Rico 89: 263–266.
Whitaker T.W. (1947). American origin of the cultivated cucurbits. Ann. Mo. Bot. Gard. 34: 101–111.
Whitaker T.W. , Bemis W.P. (1964). Evolution in the genus Cucurbita. Evolution 18: 553–559.
Whitaker T.W. , Cutler H.C. (1965). Cucurbits and cultures in the Americas. Econ. Bot. 19: 344–349.
Whitaker T.W. , Cutler H.C. (1971). Prehistoric cucurbits from the Valley of Oaxaca. Econ. Bot. 25: 123–127.
Whitaker T.W. , Davis G.N. (1962). Cucurbits. New York: Interscience.
Whitaker T.W. , Robinson R.W. (1986). Squash breeding. In: Bassett M.J. , ed., Breeding Vegetable Crops. Westport, CT: AVI Publishing, pp. 209–242.
Wien H.C. (1997). The Physiology of Vegetable Crops. Wallingford, UK: CABI.
Wien H.C. , Stapleton S.C. , Maynard D.N. , McClurg C. , Nyankanga R. , Riggs D. (2002). Regulation of female flower development in pumpkin (Cucurbita spp.) by temperature and light. In: Maynard D.N. , ed., Cucurbitaceae 2002. Alexandria, VA: ASHS Press, pp. 307–315.
Wilson H.D. , Doebley J. , Duvall M. (1992). Chloroplast DNA diversity among wild and cultivated members of Cucurbita. Theor. Appl. Genet. 84: 859–865.
Xiong J.-S. , Ding J. , Li Y. (2015). Genome-editing technologies and their potential application in horticultural crop breeding. Hort. Res. 2: 15019.
Yeager A.F. , Latzke E. (1932). Buttercup squash, its origin and use. North Dakota Agric. Expt. Sta. Bull. 258, 19 pp.
Zack C.D. , Loy J.B. (1981). Effect of fruit development on vegetative growth of squash. Can. J. Plant. Sci. 61: 673–676.
Zhang G.Y. , Ren Y. , Sun H. , Guo S , Zhang F. , Zhang J. , Zhang H. , Jia, Z, Fei Z. , Xu Y. , Li H. (2015). A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genom. 16: 1101.
Zheng Y.H. , Alverson A.J. , Wang Q.F. , Palmer J.D. (2013). Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species. J. Systemat. Evol. 51: 326–334.
Zhiteneva N.E. (1930). The world’s assortment of pumpkins (Russian, English abstr). Trudy Prikl. Bot. Genet. Selek. 23: 157–207.
Zitter T.A. , Kyle M.M. (1992). Impact of powdery mildew and gummy stem blight on collapse of pumpkins (Cucurbita pepo L.). Cucurbit Genet. Coop. Rep. 15: 93–95.
Zitter T.A. , Hopkins D.L. , Thomas C.E. (1996). Compendium of Cucurbit Diseases. St. Paul, MN: American Phytopathological Society.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1693 | 355 | 50 |
Full Text Views | 56 | 10 | 0 |
PDF Views & Downloads | 61 | 13 | 1 |
Pumpkins and squash, Cucurbita species, are valued horticultural products almost everywhere. They have been cultivated and subjected to consumer-oriented selection for thousands of years. Under this consumer orientation, they have been improved culinarily and diversified into the wonderful array of fruit sizes, shapes, and colors that are seen today. Besides their value as food items, pumpkins and squash are associated by people with abundance, warmth, sexuality, and life itself. My current objective is to provide a succinct perspective on the process of consumer-oriented exploitation of pumpkin and squash genetic resources. I briefly review the etymology, taxonomy and gross morphology of Cucurbita plants. A view is presented of how gathering, nurturing, domestication and cultivation of Cucurbita, species-specific and consumer-driven, maintained some of the parallels among species but also magnified the phenotypic differences among them. At greater length are considered the differences in resource allocation required for the preferential consumer-driven production of mature versus young fruits. Environmental effects, abiotic and biotic, are briefly mentioned, as are some of the potential benefits of biotechnology, genetic engineering, mapping, genomics, and gene editing as cognates for breeding. Finally, I consider the processes and needs for collection, maintenance, characterization, and availability of Cucurbita genetic resources and the dangers imposed by under-informed administrators in academia and cavalier governmental regulatory statutes toward future consumer-oriented improvement of pumpkins and squash.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1693 | 355 | 50 |
Full Text Views | 56 | 10 | 0 |
PDF Views & Downloads | 61 | 13 | 1 |