Adaptive variation in vegetative, reproductive and chemical traits of the Mediterranean Silybum marianum L., under desert-adjacent conditions

in Israel Journal of Plant Sciences
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

Adaptive variation of plant species is best evaluated under environmental gradients. Silybum marianum is a native to the Mediterranean basin, distributed continuously along an aridity gradient from northern Israel to the edge of the Negev desert. To elucidate the adaptive significance of traits associated with proximity to the desert and with increasing levels of aridity, we compared northern populations from the mesic Mediterranean end of the aridity gradient with southern, adjacent to the Negev desert populations, from the arid end. The F1 self-progeny of all populations were evaluated under open field conditions. Plants originated from southern populations grew taller and narrower, completed their life cycle earlier, and produced more abundant, smaller achenes, with a higher content of polyphenols, which grew into smaller seedlings. Correlative analysis revealed a latitudinal cline towards the desert, of a longer life cycle, and fewer, heavier, better germinating achenes, which grew into larger seedlings. We concluded that the proximity to the desert was reflected in the appearance of genotypes with improved chances of survival under arid conditions and with higher contents of polyphenols.

Sections
References
  • AbouZid S.F. Ahmed H.S. Moawad A.S. Owis A.I. Chen S.N. Nachtergael A. McAlpine J.B. Friesen J.B. Pauli G.F. (2017). Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations. Fitoterapia 119: 175184. DOI:10.1016/j.fitote.2017.04.002.

    • Search Google Scholar
    • Export Citation
  • Alemardan A. Karkanis A. Salehi R. (2013). Breeding objectives and selection criteria for Milk Thistle. Not. Bot. Horti. Agrobo. 41: 340.

    • Search Google Scholar
    • Export Citation
  • Aronson J. Kigel J. Shmida A. Klein J. (1992). Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia 89: 1726.

    • Search Google Scholar
    • Export Citation
  • Benzie I.F. Strain J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239: 7076.

    • Search Google Scholar
    • Export Citation
  • Bergholz K. May F. Ristow M. Giladi I. Ziv Y. Jeltsch F. (2017). Two Mediterranean annuals feature high within-population trait variability and respond differently to a precipitation gradient. Basic Appl. Ecol. 25: 4858.

    • Search Google Scholar
    • Export Citation
  • Chapin F.S. (1974). Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology 55: 11801198.

    • Search Google Scholar
    • Export Citation
  • Coley P.D. Bryant J.P. Chapin F.S. (1985). Resource availability and plant anti herbivore defense. Science 230: 895899.

  • Danin A. Yom-Tov Y. (1990). Ant nests as primary habitats of Silybum marianum (Compositae). Plant Syst. Evol. 169: 209217.

  • Diggle P.K. (1992). Development and the Evolution of Plant Reproductive Characters. Ecology and Evolution of Plant Reproduction. New York: Chapman & Hall.

    • Search Google Scholar
    • Export Citation
  • Eckhart V. Geber M.A. Jonas C.S. (1996). Developmental controls of flowering-time evolution in Clarkia (Onagraceae). Am. J. Bot. 83: 81.

    • Search Google Scholar
    • Export Citation
  • Fathi-Achachlouei B. Azadmard-Damirchi S. (2009). Milk thistle seed oil constituents from different varieties grown in Iran. J. Am. Oil. Chem. Soc. 86: 643649.

    • Search Google Scholar
    • Export Citation
  • Feinbrun-Dothan N. (1978). Flora Palaestina Part 3. Jerusalem: The Israel Academy of Sciences and Humanities.

  • Feinbrun-Dothan N. Danin A. (1998). Analytical Flora of Eretz Israel 2nd ed. Jerusalem: CANA Publishing House Ltd.

  • Ferenci P. Dragosics B. Dittrich H. Frank H. Benda L. Lochs H. Meryn S. Base W. Schneider B. (1989). Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J. Hepatol. 9: 105113.

    • Search Google Scholar
    • Export Citation
  • Flora K. Hahn M. Rosen H. Benner K. (1998). Milk thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastro. 93: 139143.

    • Search Google Scholar
    • Export Citation
  • Gabay R. Plitmann U. Danin A. (1994). Factors affecting the dominance of Silybum marianum L. (Asteraceae) in its specific habitats. Flora 189: 201206.

    • Search Google Scholar
    • Export Citation
  • Golodets C. Sternberg M. Kigel J. Boeken B. Henkin Z. No’am G S. Ungar E.D. (2015). Climate change scenarios of herbaceous production along an aridity gradient: vulnerability increases with aridity. Oecologia 177: 971979.

    • Search Google Scholar
    • Export Citation
  • Gresta F. Avola G. Guarnaccia P. (2007). Agronomic characterization of some spontaneous genotypes of milk thistle (Silybum marianum L Gaertn.) in Mediterranean environment. J. Herbs. Spices. Med. Plants. 12: 5160.

    • Search Google Scholar
    • Export Citation
  • Hadolin M. S̆kerget M. Knez Z. Bauman D. (2001). High pressure extraction of vitamin E-rich oil from Silybum marianum . Food. Chem. 74: 355364.

    • Search Google Scholar
    • Export Citation
  • Israel Meteorological Service. Available online: http://www.ims.gov.il/IMSENG/All_Tahazit/homepage.htm [Accessed 7 May 2017].

  • Jacobs B.P. Dennehy C. Ramirez G. Sapp J. Lawrence V.A. (2002). Milk thistle for the treatment of liver disease: a systematic review and meta-analysis. Am. J. Med. 113: 506515.

    • Search Google Scholar
    • Export Citation
  • Karkanis A. Bilalis D. Efthimiadou A. (2011). Cultivation of milk thistle (Silybum marianum L. Gaertn.), a medicinal weed. Ind. Crop. Prod. 34: 825830.

    • Search Google Scholar
    • Export Citation
  • Keasar T. Gerchman Y. Lev-Yadun S. (2016). A seven-year study of flower-color polymorphism in a Mediterranean annual plant. Basic. Appl. Ecol. 17: 741750.

    • Search Google Scholar
    • Export Citation
  • Kigel J. Konsens I. Rosen N. Rotem G. Kon A. Fragman-Sapir O. (2011). Relationships between flowering time and rainfall gradients across Mediterranean-desert transects. Israel J. Ecol. Evol. 57: 91109.

    • Search Google Scholar
    • Export Citation
  • Lacey E.P. (1988). Latitudinal variation in reproductive timing of a short-lived monocarpDaucus carota (Apiaceae). Ecology 69: 220232.

    • Search Google Scholar
    • Export Citation
  • Li B. Suzuki J.I. Hara T. (1998). Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana . Oecologia 115: 293301.

    • Search Google Scholar
    • Export Citation
  • Lucini L. Kane D. Pellizzoni M. Ferrari A. Trevisi E. Ruzickova G. Arslan D. (2016). Phenolic profile and in vitro antioxidant power of different milk thistle [Silybum marianum (L.) Gaertn.] cultivars. Ind. Crop. Prod. 83: 1116.

    • Search Google Scholar
    • Export Citation
  • Martin R.J. Lauren D.R. Smith W.A. Jensen D.J. Deo B. Douglas J.A. (2006). Factors influencing silymarin content and composition in variegated thistle (Silybum marianum). New Zeal. J. Crop. Hort. 34: 239245.

    • Search Google Scholar
    • Export Citation
  • Moles A.T. Warton D.I. Warman L. Swenson N.G. Laffan S.W. Zanne A.E. Leishman M.R. (2009). Global patterns in plant height. J. Ecol. 97: 923932.

    • Search Google Scholar
    • Export Citation
  • Murray B.R. Brown A.H.D. Dickman C.R. Crowther M.S. (2004). Geographical gradients in seed mass in relation to climate. J. Biogeogr. 31: 379388.

    • Search Google Scholar
    • Export Citation
  • Nevo E. Fu Y.B. Pavlicek T. Khalifa S. Tavasi M. Beiles A. (2012). Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. 109: 34123415.

    • Search Google Scholar
    • Export Citation
  • Peleg Z. Saranga Y. Krugman T. Abbo S. Nevo E. Fahima T. (2008). Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant. Cell. Environ. 31: 3949.

    • Search Google Scholar
    • Export Citation
  • Petrů M. Tielbörger K. Belkin R. Sternberg M. Jeltsch F. (2006). Life history variation in an annual plant under two opposing environmental constraints along an aridity gradient. Ecography 29: 6674.

    • Search Google Scholar
    • Export Citation
  • Prior R.L. Wu X. Schaich . (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food. Chem. 53: 42904302.

    • Search Google Scholar
    • Export Citation
  • Qian H. Swenson N.G. Zhang J. (2013). Phylogenetic beta diversity of angiosperms in North America. Global. Ecol. Biogeogr. 22: 11521161.

    • Search Google Scholar
    • Export Citation
  • Radjabian T. (2008). Analysis of silymarin components in the seed extracts of some milk thistle ecotypes from Iran by HPLC. Iran. J. Sci. Technol. 32: 141146.

    • Search Google Scholar
    • Export Citation
  • Ray P.M. Alexander W.E. (1966). Photoperiodic adaptation to latitude in Xanthium strumarium . Am. J. Bot. 53: 806816.

  • Reinartz J.A. (1984). Life history variation of common mullein (Verbascum thapsus): I. Latitudinal differences in population dynamics and timing of reproduction. J. Ecol. 72: 897912.

    • Search Google Scholar
    • Export Citation
  • Rysavy A. Seifan M. Sternberg M. Tielbörger K. (2016). Neighbor effects on shrub seedling establishment override climate change impacts in a Mediterranean community. J. Veget. Sci. 27: 227237.

    • Search Google Scholar
    • Export Citation
  • Schuppan D. Jia J.D. Brinkhaus B. Hahn E.G. (1999). Herbal products for liver diseases: a therapeutic challenge for the new millennium. Hepatology. 30: 10991104.

    • Search Google Scholar
    • Export Citation
  • Shmida A. Burgess T.L. (1988). Plant growth form strategies and vegetation types in arid environment. In: Werger M.J.A. van der Aart P.J.M. During H.J. Verhoeven J.T.A. Eds. Plant Form and Vegetation StructureThe Hague: SPB Academic pp. 211242.

    • Search Google Scholar
    • Export Citation
  • Shmida A. Darom D. (2000). Handbook of Wildflowers of Israel Mediterranean Flora. Jerusalem: Keter.

  • Shokrpour M. Mohammadi S.A. Moghaddam M. Ziai S.A. Javanshir A. (2008). Variation in flavonolignan concentration of milk thistle (Silybum marianum) fruits grown in Iran. J. Herb. Spice. Med. Plants. 13: 5569.

    • Search Google Scholar
    • Export Citation
  • Singh H.P. Batish D.R. Kohli R.K. (2006). Handbook of Sustainable Weed Management. New York: Food Products Press.

  • Smith H.B. (1927). Annual versus biennial growth habit and its inheritance in Melilotus alba . Am. J. Bot. 14: 129146.

  • Sulas L. Ventura A. Murgia L. (2008). Phytomass production from Silybum marianum for bioenergy. Opt. Méd. 79: 487490.

  • Sulas L. Re G.A. Bullitta S. Piluzza G. (2016). Chemical and productive properties of two Sardinian milk thistle (Silybum marianum (L.) Gaertn.) populations as sources of nutrients and antioxidants. Genet. Resour. Crop. Evol.63: 315326.

    • Search Google Scholar
    • Export Citation
  • Vaknin Y. Hadas R. Schafferman D. Murkhovsky L. Bashan N. (2007). The potential of milk thistle (Silybum marianum L.), an Israeli native, as a source of edible sprouts rich in antioxidants Int. J. Food. Sci. Nutr. 20: 18.

    • Search Google Scholar
    • Export Citation
  • Winn A.A. Gross K.L. (1993). Latitudinal variation in seed weight and flower number in Prunella vulgaris . Oecologia. 93: 5562.

  • Zaidman B. Ghanim M. Vaknin Y. (2010) Effect of seed weight on seed vigor and early seedling growth of Jatropha curcas, a biodiesel plant. Seed. Sci. Technol. 38: 758767.

    • Search Google Scholar
    • Export Citation
Figures
  • View in gallery

    Location names and their map coordinates for northern (N1-5) and southern (S1-5) achene collection sites of S. marianum populations. Scale bar is 10 km. A dotted line marks the border of the desert region with less than 200 mm annual precipitation.

  • View in gallery

    Vegetative and reproductive development of field-grown plants in a “common garden experiment” planted at the ARO research institute in Rishon-LeZion. A. Day of planting; B. Leaf production and expansion (~50 days); C. Maximal leaf expansion forming a large rosette (70–80 days); D. Blooming stalk elongation and initiation of bloom (90–110 days); E. Initiation of seed maturation (100–110 days); F. Full seed maturation (~110 days).

  • View in gallery

    Vegetative phenology of plants originated from southern (Blue symbols) and northern (Red symbols) populations, from achene germination to achene production. A. The number of leaves; B. Plant width; C. Plant height.

  • View in gallery

    Multivariate stepwise discriminant analysis of climatic conditions, plant, achene and seedling traits using 21 climatic and measured traits (A) or 18 measured traits (B), showing canonical scores of plants originated from northern (North) and southern (South) populations.

Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 63 63 3
Full Text Views 9 9 1
PDF Downloads 6 6 1
EPUB Downloads 0 0 0