Passiflora suberosa L. (Passifloraceae) can be found throughout the Americas, and has several medicinal properties, including antioxidant, antibacterial, anti-hemolytic, hypolipidemic, and hypoglycemic activities. Germination rates of P. suberosa are low, even with dormancy breaking treatments, posing an obstacle for its multiplication. Vegetative propagation is a valuable approach to produce clones of elite individuals with important pharmacological characteristics, affording fast genetic improvement of biomass source for both phytomedicine manufacturing and bioactive compound isolation. Understanding the rooting process of this species is an important step to exploit its full potential in a sustainable way. We investigated adventitious rooting (AR) in absence or presence of exogenous auxin in P. suberosa cuttings, using a non-aerated hydroponic system. Changes in concentration of flavonoids, phenolics, hexoses, starch, and auxin, as well as peroxidase activity, were monitored along AR. Cuttings showed spontaneous rooting, although the application of exogenous indole-3-butyric acid (IBA) yielded higher number of shorter roots. Biochemical parameters, mainly concentration of carbohydrates and total phenolics, as well as peroxidase activity, varied along the course of the experiments. Based on these results, attempts were made to up- or down-modulate rooting responses by applying putative regulators to the growth solution at different time points. It was possible to block the positive effect of auxin on root development, with only minor positive impacts on the modulated control devoid of auxin. Overall analyses suggested that the rooting system proved effective and specific peroxidase activity showed partial correlation with AR, being able to suffer modulation by culture solution factors.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agulló-Antón M.Á. , Sánchez-Bravo J. , Acosta M. , Druege U. (2011). Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? J. Plant Growth Regul., 30: 100–113. DOI 10.1007/s00344-010-9174-8.
Aumond M.L. , De Araujo A.T. , Junkes C.F.O. , De Almeida M.R. , Matsuura H.N. , De Costa F. , Fett-Neto A.G. (2017). Events associated with early age-related decline in adventitious rooting competence of Eucalyptus globulus Labill. Front. Plant Sci., 8: 1–10. DOI 10.3389/fpls.2017.01734.
Bandara K.R.V. , Padumadasa C. , Peiris D.C. (2018). Potent antibacterial, antioxidant and toxic activities of extracts from Passiflora suberosa L. leaves. Peer J., 6: e4804. DOI 10.7717/peerj.4804.
Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 72: 248–254. DOI 10.1016/0003-2697(76)90527-3.
Brown D.E. , Rashotte A.M. , Murphy A.S. , Normanly J. , Tague B.W. , Peer W.A. , Taiz L. , Muday G.K. (2001). Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol., 126: 524–535. DOI 10.1104/pp.126.2.524.
Cavichioli J.C. , Meletti L.M.M. , Narita N. (2018) Aspectos da cultura do maracujazeiro no Brasil [Aspects of passion fruit cultivation in Brazil]. http://www.todafruta.com.br/wp-concentration/uploads/2018/05/MARACUJA.pdf. Access 15 May 2019.
Da Costa C.T. , De Almeida M.R. , Ruedell C.M. , Schwambach J. , Maraschin F.S. , Fett-Neto A.G. (2013). When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci., 4: 1–19. DOI 10.3389/fpls.2013.00133.
De Almeida M.R. , De Bastiani D. , Gaeta M.L. , Mariath J.E.A. , De Costa F. , Retallick J. , Nolanc L. , Taic H.H. , Strömvikd M.V. , Fett-Neto A.G. (2015). Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus . Plant Sci., 239: 155–165. DOI 10.1016/j.plantsci.2015.07.022.
De Klerk G.J. , Guan H. , Huisman P. , Marinova S. (2011). Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9.’ Plant Growth Regul., 63: 175–185. DOI 10.1007/s10725-010-9555-9.
De Klerk G.J. , Van Der Krieken W. , De Jong J.C. (1999). The formation of adventitious roots: New concepts, new possibilities. In Vitro Cell Dev. Biol.-Plant, 35: 189–199. DOI 10.1007/s11627-999-0076-z.
Druege U. , Franken P. , Hajirezaei M.R. (2016). Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front. Plant Sci., 7: 1–14. DOI 10.3389/fpls.2016.00381.
Druege U. , Hilo A. , Pérez-Pérez J.M. , Klopotek Y. , Acosta M. , Shahinnia F. , Zerche S.B. , Franken P. , Hajirezaei M.R. (2019). Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Ann. Bot., 123: 929–949. DOI 10.1093/aob/mcy234.
Dubois M. , Gilles K.A. , Hamilton J.K. , Rebers P.A. , Smith F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350–356. DOI 10.1021/ac60111a017.
Faleiro F.G. , Junqueira N.T.V. , Junghans T.G. , Jesus O.N.D. , Miranda, D., Otoni W.C. (2019). Advances in passion fruit (Passiflora spp.) propagation. Rev. Bras. Frutic., 41(2). DOI 10.1590/0100-29452019155.
Fett-Neto A.G. , Teixeira S.L. , Da Silva E.A.M. , Sant’Anna R. (1992). Biochemical and morphological changes during in vitro rhizogenesis in cuttings of Sequoia sempervirens (D.Don) Endl. J. Plant Physiol., 140: 720–728. DOI 10.1016/S0176-1617(11)81029-1.
Gayomba S.R. , Watkins J.M. , Muday G.K. (2017) Flavonols regulate plant growth and development through regulation of auxin transport and cellular redox status. In: Yoshida K. , Cheynier V. , Quideau S. (eds.). Recent advances in polyphenol research. Oxford: Wiley Blackwell.
Gazaryan I.G. , Lagrimini L.M. , Ashby G.A. , Thorneley R.N.F. (1996). Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem. J., 313: 841–847.
Gioppato H.A. , Da Silva M.B. , Carrara S. , Palermo B.R.Z. , Moraes T.S. , Dornelas M. C. (2019). Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding. Theor. Exp. Plant Physiol., 31: 173–181. DOI 10.1007/s40626-018-0134-1.
Hirsilä M. , Koivunen P. , Xu L. , Seeley T. , Kivirikko K.I. , Myllyharju J. (2005). Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J., 29: 1–29. DOI 10.1096/fj.04-3399fje.
Hu T. , Dryhurst G. (1997). Electrochemical and peroxidase O2-mediated oxidation of indole-3-acetic acid at physiological pH. J. Electroanal. Chem., 432: 7–18. DOI 10.1016/S0022-0728(97)00227-1.
Kefeli V. , Kutáček M. (1979). Effects of phenolic compounds on auxin biosynthesis and vice versa. Regul. Second. Prod. Plant. Horm. Metab., 13–23. DOI 10.1016/b978-0-08-023179-2.50006-x.
Kidøy L. , Nygard A.M. , Andersen,O.M., Pedersen A.T. , Aksnes D.W. , Kiremire A.B.T. (1997) Anthocyanins in fruits of Passiflora edulis and P. suberosa. J. Food Compos . Anal., 10: 49–54. DOI 10.1006/jfca.1996.0514.
Kim Y.J. , Oh Y.J. , Park W.J. (2006). HPLC-based quantification of indole-3-acetic acid in the primary root tip of maize. J. Nanobiotechnol., 3: 40–45.
Kučerová D. , Kollárová K. , Vatehová Z. , Lišková D. (2016). Interaction of galactoglucomannan oligosaccharides with auxin involves changes in flavonoid accumulation. Plant. Physiol. Biochem., 98: 155–161. DOI 10.1016/j.plaphy.2015.11.023.
Marostega T.N. , Cuiabano M.N. , Ranzani R.E. (2015). Efeito de tratamento térmico na superação de dormência de sementes de Passiflora suberosa L. [Effect of thermal treatment on dormancy breaking of Passiflora suberosa L. seeds]. Biosci. J., 31: 445–450. DOI 10.14393/BJ-v31n2a2015-22385.
Mathesius U. (2001). Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52: 419–426. DOI 10.1093/jexbot/52.suppl_1.419.
McCready R.M. , Guggolz J. , Silviera V. , Owens H.S. (1950). Determination of starch and amylose in vegetables. Anal. Chem., 22: 1156–1158. DOI 10.1021/ac60045a016.
Meudt W.J. 1971. Interactions of sulfite and manganous ion with peroxidase oxidation products of indole-3-acetic acid. Phytochemistry. 10: 2103–2109. DOI 10.1016/S0031-9422(00)97203-0.
Mikovski A.I. , Silva N.T.D. , Souza C.D.S. , Machado M.D. , Otoni W.C. , Carvalho I.F. , Rocha D.I. , Silva M.L. (2019). Tissue culture and biotechnological techniques applied to passion fruit with ornamental potential: an overview. Ornam. Hortic., 25(2), 189–199. DOI 10.14295/oh.v25i2.2036.
Milward-de-Azevedo M.A. , Baumgratz J.F.A. (2004). Passiflora L. subgênero Decaloba (Dc.) Rchb. (Passifloraceae) na Região sudeste do Brasil [Passiflora L. subgenus Decaloba (Dc.) Rchb. (Passifloraceae) in the southeastern region of Brazil]. Rodriguésia, 55: 17–54. DOI 10.1590/2175-78602004558502.
Mondin C.A. , Cervi A.C. , Moreira G.R.P. (2011). Sinopse das espécies de Passiflora L. (Passifloraceae) do Rio Grande do Sul, Brasil [Synopsis of the Passiflora L. (Passifloraceae) species in Rio Grande do Sul, Brazil]. Braz. J. Biosci., 9: 3–27.
Murashige T. , Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15: 473–497. DOI 10.1111/j.1399-3054.1962.tb08052.x.
Ozarowski M. , Thiem B. (2013). Progress in micropropagation of Passiflora spp. to produce medicinal plants: a mini-review. Braz. J. Pharmacogn., 23: 937–947. DOI 10.1590/S0102-695X2013000600011.
Pacurar D.I. , Perrone I. , Bellini C. (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol. Plant., 151: 83–96. DOI 10.1111/ppl.12171.
Pandey V.P. , Bhagat P.K. , Prajapati R. (2016). A defense associated peroxidase from lemon having dye decolorizing ability and offering resistance to heat, heavy metals and organic solvents. Biochem. Anal., 5: 1000291. DOI 10.4172/2161-1009.1000291.
Passardi F. , Cosio C. , Penel C. , Dunand C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Rep., 24: 255–265. DOI 10.1007/s00299-005-0972-6.
Peer W.A. , Blakeslee J.J. , Yang H. , Murphy A.S. (2011). Seven things we think we know about auxin transport. Mol. Plant. 4: 487–504. DOI 10.1093/mp/ssr034.
Peer W.A. , Cheng Y. , Murphy A.S. (2013). Evidence of oxidative attenuation of auxin signalling. J. Exp. Bot., 64: 2629–2639. DOI 10.1093/jxb/ert152.
Peer W.A. , Murphy A.S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci., 12: 556–563. DOI 10.1016/j.tplants.2007.10.003.
Ruedell C.M. , De Almeida M.R. , Schwambach J. , Posenato C.F. , Fett-Neto A.G. (2013). Pre and post-severance effects of light quality on carbohydrate dynamics and microcutting adventitious rooting of two Eucalyptus species of contrasting recalcitrance. Plant Growth Regul., 69: 235–245. DOI 10.1007/s10725-012-9766-3.
Steffens B. , Kovalev A. , Gorb S.N. , Sauter M. (2012). Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling. Plant Cell., 24: 3296–3306. DOI 10.1105/tpc.112.101790.
Steffens B. , Rasmussen A. (2016). The physiology of adventitious roots. Plant Physiol., 170: 603–617. DOI 10.1104/pp.15.01360.
Sudasinghe H.P. , Peiris D.C. (2018). Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. Peer J., 6: . DOI 10.7717/peerj.4389.
Teale W. , Palme K. (2018). Naphthylphthalamic acid and the mechanism of polar auxin transport. J. Exp. Bot., 69: 303–312. DOI 10.1093/jxb/erx323.
Tognetti V.B. , Mühlenbock P. , van Breusegem F. (2012). Stress homeostasis - the redox and auxin perspective. Plant, Cell Environ. 35: 321–333. DOI 10.1111/j.1365-3040.2011.02324.x.
Vilasboa J. , Da Costa, C.T. , Fett-Neto A.G. (2019). Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. Prog. Biophys. Mol. Biol., 146: 85–97. DOI 10.1016/j.pbiomolbio.2018.12.007.
Zhang J. , Lin J.E. , Harris C. , Pereira F.C.M. , Wu F. , Blakeslee J.J. , Peer W.A. (2016). DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl. Acad. Sci., 113: 11010–11015. DOI 10.1073/pnas.1604769113.
Zhang J. , Peer W.A. (2017). Auxin homeostasis: The DAO of catabolism. J Exp Bot., 68: 3145–3154. DOI 10.1093/jxb/erx221.
Zhishen J. , Mengcheng T. , Jianming W. (1999). The determination of flavonoid concentrations in mulberry and their scavenging effects on superoxide radicals. Food Chem., 64: 555–559. DOI 10.1016/S0308-8146(98)00102-2.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1315 | 343 | 63 |
Full Text Views | 28 | 3 | 0 |
PDF Views & Downloads | 32 | 2 | 0 |
Passiflora suberosa L. (Passifloraceae) can be found throughout the Americas, and has several medicinal properties, including antioxidant, antibacterial, anti-hemolytic, hypolipidemic, and hypoglycemic activities. Germination rates of P. suberosa are low, even with dormancy breaking treatments, posing an obstacle for its multiplication. Vegetative propagation is a valuable approach to produce clones of elite individuals with important pharmacological characteristics, affording fast genetic improvement of biomass source for both phytomedicine manufacturing and bioactive compound isolation. Understanding the rooting process of this species is an important step to exploit its full potential in a sustainable way. We investigated adventitious rooting (AR) in absence or presence of exogenous auxin in P. suberosa cuttings, using a non-aerated hydroponic system. Changes in concentration of flavonoids, phenolics, hexoses, starch, and auxin, as well as peroxidase activity, were monitored along AR. Cuttings showed spontaneous rooting, although the application of exogenous indole-3-butyric acid (IBA) yielded higher number of shorter roots. Biochemical parameters, mainly concentration of carbohydrates and total phenolics, as well as peroxidase activity, varied along the course of the experiments. Based on these results, attempts were made to up- or down-modulate rooting responses by applying putative regulators to the growth solution at different time points. It was possible to block the positive effect of auxin on root development, with only minor positive impacts on the modulated control devoid of auxin. Overall analyses suggested that the rooting system proved effective and specific peroxidase activity showed partial correlation with AR, being able to suffer modulation by culture solution factors.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1315 | 343 | 63 |
Full Text Views | 28 | 3 | 0 |
PDF Views & Downloads | 32 | 2 | 0 |