Expression of a Rap2.12 like-1 ERF gene during adventitious rooting of chestnut and oak microshoots

In: Israel Journal of Plant Sciences
View More View Less
  • a Laboratorio Biotecnología Vegetal, Spain
  • b Department of Plant Physiology, Instituto de Investigaciones Agrobiológicas de Galicia (IIAG-CSIC), Spain
  • c Department of Breeding and Cultivation, Phytoplant Research S.L., Calle Astrónoma Cecilia Payne, Edificio Centauro, Spain
  • d Department of Plant Physiology, Instituto de Investigaciones Agrobiologicas de Galicia, Avda de Vigo s/n, Santiago de Compostela, Spain

Adventitious rooting of cuttings is a complex developmental process in forest species, with several exogenous and endogenous factors influencing the outcome of the process. In this study we applied an in vitro working system, comprising two lines of microshoots with the same genotype but at a different ontogenetic stages, in two different tree species (chestnut and oak). We analyzed the expression of a gene encoding an AP2/ERF transcription factor from group VII in the initial hours of the adventitious rooting induction, both in rooting competent and incompetent microshoots. The analysis revealed that expression of this gene is related to wounding, ontogenetic stage and auxin in a complex and species-specific manner. Putative induction of the gene by auxin was also analyzed in the presence of naphthyl-phthalamic acid (NPA), an auxin transport inhibitor. In situ expression analysis in chestnut relates the gene activity to cambial divisions and root primordia in rooting competent microshoots, as well as in the root apex. The putative role of the gene during adventitious roots formation is discussed.

  • Abarca D. , Pizarro A. , Hernández I. , Sánchez C. , Solana S.P. , del Amo A. , et al. (2014). The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots. BMC Plant Biol. 14: 354. DOI: 10.1186/s12870-014-0354-8.

    • Search Google Scholar
    • Export Citation
  • Aquea F. , Matte J.P. , Gutiérrez F. , Rico S. , Lamprecht M. , Sánchez C. , Arce-Johnson P. (2009). Molecular characterization of a Trithorax-group homologue gene from Pinus radiata . Plant Cell Rep. 28: 15311538. DOI: 10.1007/s00299-009-0752-9.

    • Search Google Scholar
    • Export Citation
  • Ballester A. , San-José M.C. , Vidal N. , Fernández-Lorenzo J.L. , Vieitez A.M. (1999). Anatomical and biochemical events during in vitro rooting of microcuttings from juvenile and mature phases of chestnut. Ann. Bot. 83: 619629. DOI: 10.1006/anbo.1999.0865.

    • Search Google Scholar
    • Export Citation
  • Ballester A. , Vidal N. , Vieitez A.M. (2009). Developmental stages during in vitro rooting of hardwood trees from material with juvenile and mature characteristics. In: Adventitious root formation of forest trees and horticultural plants—from genes to applications. (Eds) Niemii K. , Scagel C. . Research Singpost, Kerala. 277299.

    • Search Google Scholar
    • Export Citation
  • Bailey-Serres J. , Fukao T. , Gibbs D.J. , Holdsworth M.J. , Lee S.C. , et al. (2012). Making sense of low oxygen sensing. Trends Plant Sci. 17: 12938. DOI:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonga J.M. (1987). Clonal propagation of mature trees: problems and possible solutions. In Cell and Tissue Culture in Forestry. (Eds) Bonga J.M. and Durzan D.J. . Martinus Nijhoff Publishers, Dordrecht. 249271. DOI: 10.1007/978-94-017-0994-1_15.

    • Search Google Scholar
    • Export Citation
  • Corredoira E. , Valladares S. , Allona I. , Aragoncillo C. , Vieitez A.M. , Ballester A. (2012). Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds. Tree Physiol. 32:13891402. DOI: 10.1093/treephys/tps098.

    • Search Google Scholar
    • Export Citation
  • Da Costa C.T. , de Almeida M.R. , Ruedell C.M. , Schwambach J. , Maraschin F.S. , Fett-Neto A.G. (2013). When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 4:133. DOI: 10.3389/fpls.2013.00133.

    • Search Google Scholar
    • Export Citation
  • Day M.E. , Greenwood M.S. , Diaz-Sala C. (2002). Age-and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol. 22: 507513. DOI: 10.1093/treephys/22.8.507.

    • Search Google Scholar
    • Export Citation
  • De Almeida M.R. , Bastiani D. , Gaeta M.L. , Mariath J.E.A. , De Costa F. , Retallick J. , et al. (2015). Comparative transcriptional analysis provides insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus . Plant Sci. 239: 155165. DOI: 10.1016/j.plantsci.2015.07.022.

    • Search Google Scholar
    • Export Citation
  • Diaz-Sala C. (2014). Direct reprogramming of adult somatic cells toward adventitious root formation in forest tree species: the effect of the juvenile–adult transition. Front. Plant Sci. 5: 310. DOI: 10.3389/fpls.2014.00310.

    • Search Google Scholar
    • Export Citation
  • Druege U. , Franken P. , Hajirezaei M.R. (2016). Plant hormone homeostasis, signaling and function during adventitious root formation in cuttings. Front. Plant Sci. 7: 381. DOI: 10.3389/fpls.2016.00381.

    • Search Google Scholar
    • Export Citation
  • Druege U. , Franken P. , Lischewski S. , Ahkami A. H. , Zerche S. , Hause B. , M.R. Hajirezaei (2014). Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. Front. Plant. Sci. 5: 494. DOI: 10.3389/flps.2014.00494.

    • Search Google Scholar
    • Export Citation
  • Eysholdt‐Derzsó E. , Sauter M. (2017). Root bending is antagonistically affected by hypoxia and ERF‐mediated transcription via auxin signaling. Plant Phys. 175: 412423. DOI: 10.1104/pp.17.00555.

    • Search Google Scholar
    • Export Citation
  • Eysholdt‐Derzsó E. , Sauter M. (2019). Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation inArabidopsis . Plant Biol. 21 (Suppl. 1): 103108. DOI: 10.1111/plb.12873.

    • Search Google Scholar
    • Export Citation
  • Fernández-Lorenzo J. , Ballester A. , Rigueiro A. (2005). Phenolic content of microcuttings of adult chestnut along rooting induction. Plant Cell Tiss. Organ Cult. 83: 153159. DOI: 10.1007/s11240-005-4786-6.

    • Search Google Scholar
    • Export Citation
  • Fukuda Y. , Hirao T. , Mishima K. , Ohira M. , Hiraoka Y. , Takahashi M , Watanabe A. (2018). Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don. BMC Plant Biology 18:201. DOI: 10.1186/s12870-018-1401-7*.

    • Search Google Scholar
    • Export Citation
  • Gao Y. , Zhao M. , Wu X. , Li D. , Borthakur D. , Ye J. , Zheng X. , Lu J. (2019). Analysis of differentially expressed genes in tissues of Camellia sinensis during dedifferentiation and root redifferentiation. Scientific Reports, 9: 2935. DOI: 10.1038/s41598-019-39264-5.

    • Search Google Scholar
    • Export Citation
  • Geiss G. , Gutierrez L. , Bellini C. (2009). Adventitious root formation: new insights and perspectives. In: Annual Plant Reviews - Root Development. (Ed) Beeckman T. Wiley-Blackwell . 37: 127156. DOI:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gil B. , Pastoriza E. , Ballester A. , Sánchez C. (2003). Isolation and characterization of a cDNA from Quercus robur differentially expressed in juvenile-like and mature shoots. Tree Physiol. 23: 633640. DOI: 10.1093/treephys/23.9.633.

    • Search Google Scholar
    • Export Citation
  • Girardi C.L. , Rombaldi C.V. , Dal Cero J. , Nobile P.M. , Laurens F. , Bouzayen M. , Quecini V. (2013). Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis. Sci. Hortic. 151: 112121. DOI: 10.1016/j.scienta.2012.12.017.

    • Search Google Scholar
    • Export Citation
  • Giuntoli B. , Perata P. (2018). Group VII Ethylene response factors in Arabidopsis: Regulation and physiological roles. Plant Physiol. 176 (2): 11431155. DOI: 10.1104/pp.17.01225.

    • Search Google Scholar
    • Export Citation
  • Giuntoli B. , Shukla V. , Maggiorelli F. , Giorgi F.M. , Lombardi L. , Perata P. , Licausi F. (2017). Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana . Plant Cell Environ. 40: 23332346. DOI: 10.1111/pce.13037.

    • Search Google Scholar
    • Export Citation
  • Gresshoff P.M. , Doy C.H. (1972). Development and differentiation of haploid Lycopersicon esculentum . Planta. 107: 161170. DOI: 10.1007/BF00387721.

    • Search Google Scholar
    • Export Citation
  • Guan L. , Murphy A. , Peer W. , Gan L. , Li Y. , Chen Z.M. (2015). Physiological and molecular regulation of adventitious root formation. Crit. Rev. Plant Sci. 34(5): 506521. DOI: 10.1080/07352689.2015.1090831.

    • Search Google Scholar
    • Export Citation
  • Hackett W.P. , Murray J.R. (1996). Maturation or phase change. In: Molecular and morphological markers for juvenility, maturity, rejuvenation and somatic embryogenesis in woody plant species. (Eds) Thompson D. and Welander M. . European Commission, Malmo, Sweden, 722.

    • Search Google Scholar
    • Export Citation
  • Harfouche A. , Rugini E. , Mencarelli F. , Botondi R. , Muleo R. (2008). Salicylic acid induces H2O2 production and endochitinase gene expression but not ethylene biosynthesis in Castanea sativa in vitro model system. J Plant Physiol. 165(7):734744. DOI: 10.1016/j.jplph.2007.03.010.

    • Search Google Scholar
    • Export Citation
  • Heyman J. , Canher B. , Bisht A. , Christiaens F. , de Veylder L. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci. 131. DOI: 10.1242/jcs.208215.

    • Search Google Scholar
    • Export Citation
  • Ito T.M. , Polido P.B. , Rampim M.C. , Kaschuk G. , Souza S.G. (2014). Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genet. Mol. Res. 3: 78397851. DOI: 10.4238/2014.September.26.22.

    • Search Google Scholar
    • Export Citation
  • Lakehal A. , Bellini C. (2019). Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiol. Plant. 165: 90100. DOI: 10.1111/ppl.12823.

    • Search Google Scholar
    • Export Citation
  • Legué V. , Rigal A. , Bhalerao R.P. (2014). Adventitious root formation in tree species: involvement of transcription factors. Physiol. Plant. 151: 192198. DOI: 10.1111/ppl.12197.

    • Search Google Scholar
    • Export Citation
  • Li K. , Liang Y. , Xing L. , Mao J. , Liu Z. , Dong F , Meng Y. , Han M. , Zhao C , Bao L. , Zhang D. (2018). Transcriptome analysis reveals multiple hormones, wounding and sugar signaling pathways mediate adventitious root formation in apple rootstock. Int. J. Mol. Sci. 19: 2201.DOI:10.3390/ijms19082201.

    • Search Google Scholar
    • Export Citation
  • Licausi F. , Dongen J.T. , Giuntoli B. , Novi G. , Santaniello A. Geigenberger P. , Perata P. (2010). HRE1 and HRE2, two hypoxia‐inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana . Plant J. 62: 302315. DOI: 10.1111/j.1365-313X.2010.04149.x.

    • Search Google Scholar
    • Export Citation
  • Lup S.D. , Tian X. , Xu J. , Perez-Perez J.M. (2016). Wound signaling of regenerative cell reprogramming. Plant Sci. 250: 178187. DOI: 10.1016/j.plantsci.2016.06.012.

    • Search Google Scholar
    • Export Citation
  • Papdi C. , Pérez-Salamó I. , Joseph M. , Giuntoli B. , Bögre L. , et al. (2015). The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J. 82: 772784. DOI: 10.1111/tpj.12848.

    • Search Google Scholar
    • Export Citation
  • Rasmussen A. , Hosseini S.A. , Hajirezaei M.R. , Druege Geelen , D. (2015). Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis.J . Exp. Bot. 66:14371452. DOI: 10.1093/jxb/eru499.

    • Search Google Scholar
    • Export Citation
  • Rigal A. , Yordanov Y.S. , Perrone I. , Karlberg A. , Tisserant E. , Bellini C. , et al. (2012). The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol. 160: 19962006. DOI: 10.1104/pp.112.204453.

    • Search Google Scholar
    • Export Citation
  • Sánchez M.C. , Vieitez A.M. (1991). In vitro morphogenetic competence of basal sprouts and crown branches of mature chestnut. Tree Physiol. 8: 5970. DOI: 10.1093/treephys/8.1.59.

    • Search Google Scholar
    • Export Citation
  • Sánchez C. , Vielba J.M. , Ferro E. , Covelo G. , Solé A. , Abarca D. , et al. (2007). Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol. 27: 14591470. DOI: 10.1093/treephys/27.10.1459.

    • Search Google Scholar
    • Export Citation
  • Saniewski M. , Góraj J. , Węgrzynowicz-Lesiak E. , Miyamoto K. , Ueda J. (2014). Differential effect of auxin transport inhibitors on rooting in some Crassulaceae species. Acta Agrobot. 67: 8592. DOI: 10.5586/aa.2014.028.

    • Search Google Scholar
    • Export Citation
  • Schmittgen T.D. , Livak K.J. (2008). Analyzing real-Time PCR data by the comparative CT method. Nat. Protoc. 3: 11011108. DOI: 10.1038/nprot.2008.73.

    • Search Google Scholar
    • Export Citation
  • Shukla V. , Lombardi L. , Iacopino S. , Pencik A. , Novak O. , Perata P. , Giuntoli B. , Licausi F. (2019). Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis . Mol. Plant. 12: 538551. DOI: 10.1016/j.molp.2019.01.007.

    • Search Google Scholar
    • Export Citation
  • Solé A. , Sánchez C. , Vielba J.M. , Valladares S. , Abarca D. , Díaz-Sala C. (2008). Characterization and expression of a Pinus radiate putative ortholog to the Arabidopsis SHORT-ROOT gene. Tree Physiol. 28: 16291639. DOI: 10.1093/treephys/28.11.1629.

    • Search Google Scholar
    • Export Citation
  • Steffens B. , Rasmussen A. (2016). The physiology of adventitious roots. Plant Physiol. 170: 603617. DOI: 10.1104/pp.15.01360.

  • Stevens M.E. , Woeste K. , Pijut P.M. (2018). Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.). Tree Physiol. 38: 877894. DOI: 10.1093/treephys/tpx175.

    • Search Google Scholar
    • Export Citation
  • Sugimoto K. , Gordon S.P. , Meyerowitz E.M. (2011). Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol. 21: 212218. DOI: 10.1016/j.tcb.2010.12.004.

    • Search Google Scholar
    • Export Citation
  • Teale W. , Palme K. (2018). Naphthylphthalamic acid and the mechanism of polar auxin transport. J. Exp. Bot. 69: 303312. DOI: 10.1093/jxb/erx323.

    • Search Google Scholar
    • Export Citation
  • Trupiano D. , Yordanov Y. , Regan S. , Meilan R. , Tschaplinski T. , Scippa G.S. , Busov V. (2013). Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus . Planta 238: 271282. DOI: 10.1007/s00425-013-1890-4.

    • Search Google Scholar
    • Export Citation
  • Tuskan G.A. , Difazio S. , Jansson S. , Bohlmann J. , et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science 313: 15961604. DOI: 10.1126/science.1128691.

    • Search Google Scholar
    • Export Citation
  • Valladares S. , Rico S. , Vieitez A.M. , Covelo P. , Sánchez C. (2013). Expression of the QrCPE gene is associated with the induction and development of oak somatic embryos. Tree Genet. Genomes. 9: 13831393. DOI: 10.1007/s11295-013-0634-8.

    • Search Google Scholar
    • Export Citation
  • Vandesompele J. , De Preter K. , Pattyn F. , Poppe B. , Van Roy N. , De Paepe A. , Speleman F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: (7) :research0034. DOI: 10.1186/gb-2002-3-7-research0034.

    • Search Google Scholar
    • Export Citation
  • Vidal N. , Arellano G. , San-José M.C. , Vieitez A. , Ballester A. (2003). Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol. 23: 12471254. DOI: 10.1093/treephys/23.18.1247.

    • Search Google Scholar
    • Export Citation
  • Vieitez A.M. , Sánchez M.C. , Amo-Marco J.B. , Ballester A. (1994). Forced flushing of branch segments as a method for obtaining reactive explants of mature Quercus robur trees for micropropagation. Plant Cell Tissue Organ Cult. 37:287295. DOI: 10.1007/BF00042342.

    • Search Google Scholar
    • Export Citation
  • Vielba J.M. , Díaz-Sala C. , Ferro E. , Rico S. , Lamprecht M. , Abarca D. , Ballester A. , Sánchez C. (2011). CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells. Tree Physiol. 31(10): 11521160. DOI: 10.1093/treephys/tpr086.

    • Search Google Scholar
    • Export Citation
  • Vielba J.M. , Varas E. , Rico S. , Covelo P. , Sánchez C. (2016). Auxin-mediated expression of a GH3 gene in relation to ontogenic state in Chestnut. Trees - Struct. Funct. 30(6): 22372252. DOI: 10.1007/s00468-016-1449-7.

    • Search Google Scholar
    • Export Citation
  • Wang P. , Ma L.L. , Li Y. , Wang S.A. , Li L.F. , Yang R.T. , Ma Y.Z. , Wang Q. (2016). Transcriptome profiling of indole-3-butyric-acid induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages. Genes Genom. 38: 145162. DOI: 10.1007/s13258-015-0352-8.

    • Search Google Scholar
    • Export Citation
  • Wei K. , Wang L. , Cheng H. , Zhang C. , Ma C. , Zhang L. , Gong W. , Wu L. (2013). Identification of genes involved in indole‐3‐butyric acid‐induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Gene 514: 9198. DOI: 10.1016/j.gene.2012.11.008.

    • Search Google Scholar
    • Export Citation
  • Weits D.A. , Kunkowska A.B. , Kamps C.W. , Portz K.M. et al. (2019). An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569: 714717. DOI: 10.1038/s41586-019-1203-6.

    • Search Google Scholar
    • Export Citation
  • Wendling I. , Trueman S.J. , Xavier A. (2014). Maturation and related aspects in clonal forestry - Part I: concepts, regulation and consequences of phase change. New Forests 45: 449. DOI: 10.1007/s11056-014-9421-0.

    • Search Google Scholar
    • Export Citation
  • Zhuang J. , Peng R.H. , Cheng Z.M. , et al. (2009). Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera . Sci Hortic-Amsterdam 123: 7381. DOI: 10.1016/j.scienta.2009.08.002.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 43 43 8
Full Text Views 1 1 0
PDF Downloads 1 1 0