The Institute of Evolution’s (IoE’s) Wild Lettuce Gene Bank (WLGB), established in the mid 1990s, contains new and extensive collections of five wild Lactuca relatives (WLRs) originating from Israel and Armenia: L. serriola, L. aculeata, L. georgica, L. altaica, and L. saligna. The objectives of the WLGB relate to the identification, collection, distribution, conservation, and characterization of the population genetic structure of these unique germplasms for crop improvement. Comprehensive studies are ongoing to determine the taxonomic position and crossing potential of the critical mass of collected species with domesticated lettuce, L. sativa, based on: (i) select morphological and phenological characteristics; (ii) molecular data; (iii) downy mildew resistance and (iv) variation in biologically active secondary metabolite content. In this review we present an overview of our key findings and highlight the advances in knowledge on these themes. Our germplasm collections and novel results, obtained by detailed, large-scale screening of natural populations and individuals for genetic variation, will considerably advance crop breeding research and practices. In addition, we critically summarize the recent literature and findings relating to three additional WLRs: L. dregeana, L. scarioloides, and L. azerbaijanica. The main long-term purpose of our research is to facilitate broadening of the genetic variation of domesticated lettuce by using new and adaptive germplasm in interspecific hybridization of lettuce.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Beharav, A., Cahaner, A., Pinthus, M.J. (1994). Mixed model for estimating the effects of the Rht1 dwarfing allele, background genes, CCC and their interaction on culm and leaf elongation of spring wheat (Triticum aestivum L.). Heredity 72:237–241.
Beharav, A., Lewinsohn. D., Lebeda, A., Nevo, E. (2006). New wild Lactuca genetic resources with resistance against Bremia lactucae. Genet. Resour. Crop Evol. 53:467–474.
Beharav, A., Ben-David, R., Doležalová, I., Lebeda, A. (2008). Eco-geographical distribution of Lactuca saligna natural populations in Israel. Isr. J. Plant Sci. 56:195–206.
Beharav, A., Ben-David, R., Doležalová, I., Lebeda, A. (2010a). Eco-geographical distribution of Lactuca aculeata natural populations in north-eastern Israel. Genet. Resour. Crop Evol. 57:679–686.
Beharav, A., Maras, M., Kitner, M., Šuštar-Vozlič, J., Sun, G.L., Doležalová, I., Lebeda, A., Meglič, V. (2010b). Comparison of three genetic similarity coefficients based on dominant markers from predominantly self-pollinating species. Biol. Plantarum 54:54–60.
Beharav, A., Ben-David, R., Malarz, J., Stojakowska, A., Michalska, K., Doležalová, I., Lebeda, A., Kisiel, W. (2010c). Variation of sesquiterpene lactones in Lactuca aculeata natural populations from Israel, Jordan and Turkey. Biochem. Syst. Ecol. 38:602–611.
Beharav, A., Ochoa, O., Michelmore, R, (2014). Resistance in natural populations of three wild Lactuca species from Israel to highly virulent Californian isolates of Bremia lactucae. Genet. Resour. Crop Evol. 61:603–609.
Beharav, A., Stojakowska, A., Ben-David, R., Malarz, J., Michalska, K., Kisiel, W. (2015). Variation of sesquiterpene lactone contents in Lactuca georgica natural populations from Armenia. Genet. Resour. Crop Evol. 62:431–441.
Beharav, A., Hellier, B., Richardson, K.L., Lebeda, A. Kisha, T. (2018a). Genetic relationships and structured diversity of Lactuca georgica germplasm from Armenia and the Russian Federation among other members of Lactuca L., subsection Lactuca L., assessed by TRAP markers. Genet. Resour. Crop Evol. 65:1963–1978.
Beharav, A., Khalifa, S., Nevo, E. (2018b). New insights into the range, morphology, and natural hybridization of wild Lactuca aculeata in Israel. Isr. J. Plant Sci. 65:175–185.
Beharav, A., Hellier, B. (2020). Bolting and Flowering Response of Lactuca georgica, a Wild Lettuce Relative, to Low Temperatures. Am. J. Plant Sci. 11:2139–2154.
Beharav, A., Malarz, J., Michalska, K., Ben-David, R., Stojakowska, A. (2020). Variation of sesquiterpene lactone contents in Lactuca altaica natural populations from Armenia. Biochem. Syst. Ecol. 90:104030.
Beharav, A. (2021). Lactuca georgica, a new wild source of resistance to downy mildew: comparative study to other wild lettuce relatives. Eur. J. Plant Pathol. 160:127–136.
Beharav, A. (2022). Lactuca georgica is a wild species belonging to the secondary lettuce gene pool: additional evidence, obtained by KASP genotyping. Genet. Resour. Crop Evol. https://doi.org/10.1007/s10722-022-01502-7.
Bennett, M.H., Gallagher, M.D.S., Bestwick, C.S., Rossiter, J.T., Mansfield, J.W. (1994). The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol. Mol. Plant Pathol. 44:321–333.
Bennett, M.H., Mansfield, J.W., Lewis, M.J., Beale, M.H. (2002). Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.). Phytochemistry 60:255–261.
Bergmeier, E., Meyer, S. (2021). Lactuca aculeata (Asteraceae), a crop wild relative new to Europe. Fl. Medit. 31:53–58.
Bernier, G., Kinet, J.M., Sachs, R.M. (1981). The Physiology of Flowering. Vol. I. The Initiation of Flowers. Boca Raton, FL: CRC Press, Inc.
Bohn, T. (2019). Carotenoids and markers of oxidative stress in human observational studies and intervention trials: Implications for chronic diseases. Antioxidants 8:179.
Braun, U., Cook, R.T.A. (2012). Taxonomic Manual of the Erysiphales (Powdery Mildews). CBS Biodiversity Series 11: 1–707.
Bynum, B., Bynum, H. (2016). Pharmacy Jar. The Lancet 388:119.
Chadwick, M., Trewin, H., Gawthrop, F., Wagstaff, C. (2013). Sesquiterpenoids lactones: benefits to plants and people. Int. J. Mol. Sci. 14:12780–12805.
Choi, H.S., Han, J.Y., Cheong, E.J., Choi, Y.E. (2022). Characterization of a pentacyclic triterpene acetyltransferase involved in the biosynthesis of taraxasterol and ψ-taraxasterol acetates in lettuce. Front. Plant Sci. 12:788356.
Choi, Y.J., Thines, M., Runge, F., Hong, S.-B., Telle, S., Shin, H.D. (2011). Evidence for high degree of specialisation, evolutionary diversity, and morphological distinctiveness in the genus Bremia. Fungal Biol. 115:102–111.
Danin, A. (2004). Distribution Atlas of Plants in the Flora Palaestina Area. Jerusalem, Israel: The Israel Academy of Sciences and Humanities.
D´Andrea, L., Felber, F., Guadagnuolo, R. (2008). Hybridization rates between lettuce (Lactuca sativa) and its wild relative (Lactuca serriola) under field conditions. Environ. Biosaf. Res. 7:61–71.
D´Andrea, L., Meirmans, P., van deWiel, C., Guadagnuolo, R., van Treuren, R., Kozlowski, G., den Nijs, H., Felber, F. (2017). Molecular biogeography of prickly lettuce (Lactuca serriola L.) shows traces of recent range expansion. J. Hered. 108:194–206
Davey, M.R., Anthony, P. (2011). Lactuca. In: C. Kole, ed., Wild Crop Relatives: Genomic and Breeding Resources. Berlin, Heidelberg: Springer-Verlag, pp. 115–128.
Dziechciarkova, M., Lebeda, A., Doležalova, I., Astley, D. (2004). Characterization of Lactuca spp. germplasm by protein and molecular markers – a review. Plant Soil Environ. 50:49–60.
Feinbrun-Dothan, N. (1978). Flora Palaestina Vol. III. Jerusalem, Israel: The Israel Academy of Sciences and Humanities.
Feinbrun-Dothan, N., Danin, A. (1998). Analytical Flora of Eretz-Israel. Jerusalem: Cana Publishing House Ltd.
Fisher, F.E., Meyer, C.A. (1846). Index Sem Hort Petrop XI.
Ford-Lloyd, B.V., Schmidt, M., Armstrong, S.J., et al (2011). Crop wild relatives – undervalued, underutilized and under threat? BioScience 61:559–565.
Gabrielian, E., Zohary, D. (2004). Wild relatives of food crops native to Armenia and Nakhichevan. Edinburgh University Press, Palermo: Fl. Medit. 14:5–80.
Gabrielian, E., Fragman-Sapir, O. (2008). Flowers of the Transcaucasus and adjacent areas: including Armenia, Eastern Turkey, Southern Georgia, Azerbaijan and Northern Iran. A.R.G. Gantner Verlag, K.G., Ruggell.
Giesbers, A.K.J., Pelgrom, A.J.E., Visser, R.G.F., Niks, R.E., Van den Ackerveken, G., & Jeuken, M.J. W. (2017). Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytol. 216:915–926.
Giesbers, A.K.J., den Boer, E., Braspenning, D.N.J., Bouten, T. P.H., Specken, J.W., van Kaauwen, M.P. W., Visser, R.G.F., Niks, R.E., Jeuken, M.J.W. (2018). Bidirectional backcrosses between wild and cultivated lettuce identify loci involved in nonhost resistance to downy mildew. Theor. Appl. Genet. 131:1761–1776.
Globerson, D., Netzer, D., Sacks, J. (1980). Wild lettuce as a source for improving cultivated lettuce. In: Proc. Eucarpia meeting on Leafy Vegetables 1980. Littlehampton, UK, pp. 86–96.
Garcia, M.G., Ontivero, M., Ricci, J.C.D., Castagnaro, A. (2002). Morphological traits and high resolution RAPD markers for the identification of the main strawberry varieties cultivated in Argentina. Plant Breed. 121:76–80.
Guarino, L., ed. (1995). Collecting plant genetic diversity: Technical guidelines. CAB Int., Wallingford, UK.
Güzel, M.E., Coşkunçelebi, K., Kilian, N., Makbul, S., Gültepe, M. (2021). Phylogeny and systematics of the Lactucinae (Asteraceae) focusing on their SW Asian centre of diversity. Plant Syst. Evol. 307:7.
Harvey, W.H., Sonder, O.W. (1894). Flora Capensis Vol. 3. London: Lovell Reeve, pp. 526.
Heath, M. C. (1991). Evolution of resistance to fungal parasitism in natural ecosystems. New Phytol. 119: 331–343.
Hong, J.H., Kwon, Y.S., Choi, K.J., Mishra, R.K., Kim, D.H. (2013). Identification of lettuce germplasms and commercial cultivars using SSR markers developed from EST. Korean J. Hortic. Sci. Technol. 31:772–781.
Ishihara, N., Miyase, T., Ueno, A. (1987). Sesquiterpene glycosides from Lactuca sativa L. Chem. Pharm. Bull. 35:3905–3908.
Jemelková, M., Kitner, M., Křístková, E., Beharav, A., Lebeda, A. (2015). Biodiversity of Lactuca aculeata germplasm assessed by SSR and AFLP markers, and resistance variation to Bremia lactucae. Biochem. Syst. Ecol. 61:344–356.
Jeuken, M., Lindhout, P. (2002). Lactuca saligna, a non-host for lettuce downy mildew (Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance. Theor. Appl. Genet. 105:384–391.
Kilian, N., Gemeinholzer, B., Lack, H.W. (2009). Tribe Cichorieae. In: V.A., Funk, A. Susanna, T. Stuessy, and R. Bayer, eds., Systematics, evolution, and biogeography of the Compositae. International Association for Plant Taxonomy, Vienna, Austria, pp. 343–383.
Kilian, N., Sennikov, A., Wang, Z.-H., Gemeinholzer, B., Zhang. J.-W. (2017). Sub-Parathethyan origin and middle to late Miocene principal diversification of the Lactucinae (Compositae: Cichorieae) inferred from molecular phylogenetics, divergence-dating and biogeographic analysis. Taxon 66:675–703. doi:10.12705/663.9
Kim, K.H., Lee, K.H., Choi, S.U., Kim, Y.H., Lee, K.R. (2008.) Terpene and phenolic constituents of Lactuca indica L. Arch. Pharm. Res. 31:983–988.
Kitner, M., Lebeda, A. Doležalová, I., Maras, M., Křístková, E., Nevo, E., Pavlíček, T., Meglic, V., Beharav, A. (2008). AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle East countries. Isr. J. Plant Sci. 56:185–193.
Kitner, M., Majesky, L., Křistková, E., Jemelková, M., Lebeda, A., Beharav, A. (2015). Genetic structure and diversity in natural populations of three predominantly self-pollinating wild Lactuca species in Israel. Genet. Resour. Crop Evol. 62:991–1008.
Kirpicznikov, M.E. (1964). Lactuca L. In: Komarov’s Flora of URSS, Vol. 29, Nauka, Moscow-Leningrad, pp. 274–317 (In Russian).
Kirpicznikov, M.E. (2000) Lactuca L. In: E.G. Bobrov and N.N. Tzvelev, eds., Flora of the USSR, Vol. 29, Compositae: tribe Cichorieae (English Translation), USA: Sci. Publishers, Inc, pp. 272–314.
Koopman, W.J.M., Guetta, E., Van De Wiel, C.C.M., Vosman, B., Van den Berg, R.G. (1998). Phylogenetic relationships among Lactuca (Asteraceae) species and related genera based on ITS-1 DNA sequences. American J. Bot. 85:1517–1530.
Koopman, W.J.M., Zevenbergen, M.J., Van den Berg, R.G. (2001). Species relationships in Lactuca s.l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. American J. Bot. 88:1881–1887.
Křístková, E., Lebeda, A., Kitner, M., Vafková, B., Matoušková, Z., Doležalová, I., Beharav, A. (2012). Phenotypes of the natural interspecific hybrids in the genus Lactuca. Úroda (vědecká příloha) 60/9:28–31. ISSN: 0139-601
Kuang, H., Woo, S.S., Meyers, B.C., Nevo, E., Michelmore, R.W. (2004). Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894.
Kuang, H., Ochoa, O.E., Nevo, E., Michelmore, R.W. (2006). The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions. Plant J. 47:38–48.
Kuang, H., van Eck, H.J., Sicard, D., Michelmore, R., Nevo, E. (2008). Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster. Genetics 178:1547–1558.
Lebeda, A. (1986). Specificity of interactions between wild Lactuca spp. and Bremia lactucae isolates from Lactuca serriola. J. Phytopathol. 117:54–64.
Lebeda, A., Reinink, K. (1994). Histological characterization of resistance in Lactuca saligna to lettuce downy mildew. Physiol. Mol. Plant Pathol. 44:125–139.
Lebeda, A. and Pink, D. A. C. (1998). Histological aspects of the response of wild Lactuca spp. and their hybrids, with L. sativa to lettuce downy mildew (Bremia lactucae). Plant Pathol. 47:723–736.
Lebeda, A., Doležalová, I., Křístková, E., Mieslerová, B. (2001). Biodiversity and ecogeography of wild Lactuca spp. in some European countries. Genet. Resour. Crop Evol. 48:153–164.
Lebeda, A., Pink, D.A.C., Astley, D. (2002). Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In: P.T.N. Spencer-Phillips, U. Gisi and A. Lebeda, eds., Advances in Downy Mildew Research, Dordrecht: Kluwer Academic Publishers, pp. 85–117.
Lebeda, A., Zinkernagel, V. (2003). Characterization of new highly virulent German isolates of Bremia lactucae and efficiency of resistance in wild Lactuca spp. germplasm. J. Phytopathol. 151:274–282.
Lebeda, A., Doležalová, I., Feráková, V., Astley, D. (2004a). Geographical distribution of wild Lactuca species (Asteraceae, Lactuceae). Bot. Rev. 70:328–356.
Lebeda, A., Doležalová, I., Astley, D. (2004b). Representation of wild Lactuca spp. (Asteraceae, Lactuceae) in world genebank collections. Genet. Res. Crop Evol. 51:167–174.
Lebeda, A., Sedlařova, M., Lynn, J. and Pink, D. A. C. (2006). Phenotypic and histological expression of different genetic backgrounds in interactions between lettuce, wild Lactuca spp., L. sativa × L. serriola hybrids and Bremia lactucae. Eur. J. Plant Pathol. 115:431–441.
Lebeda, A., Ryder, E.J., Grube, R., Doležalová, I., Křístková, E. (2007a). Lettuce (Asteraceae Lactuca spp.). In: R.J. Singh, ed., Genetic Resources, Chromosome Engineering, and Crop Improvement, Vol. 3, Vegetable Crops, FL, USA: CRC Press, Taylor and Francis Group, Boca Raton, pp. 377–472.
Lebeda, A., Doležalová, I., Křístková, E., Dehmer, K.J., Astley, D., van de Wiel, C.C.M., van Treuren, R. (2007b). Acquisition and ecological characterization of Lactuca serriola L. germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genet. Resour. Crop Evol. 54:555–562.
Lebeda, A., Sedlarova, M., Petrivalský, M., Prokopova, J. (2008). Diversity of defence mechanisms in plant-oomycete interactions: a case study of Lactuca spp. and Bremia lactucae. Eur. J. Plant Pathol. 122:71–89.
Lebeda, A., Doležalová, I., Křístková, E., Kitner, M., Petrželová, I., Mieslerová, B., Novotná, A. (2009a). Wild Lactuca germplasm for lettuce breeding: current status, gaps and challenges. Euphytica 170:15–34.
Lebeda, A., Kitner, M., Dziechciarková, M., Doležalová, I., Křístková, E., Lindhout, P. (2009b). An insight into the genetic polymorphism among European populations of Lactuca serriola assessed by AFLP. Biochem. Syst. Ecol. 37: 597–608.
Lebeda, A., Mieslerová, B. (2011). Taxonomy, distribution and biology of lettuce powdery mildew (Golovinomyces cichoracearum sensu stricto). Plant Pathol. 60:400–415.
Lebeda, A., Kitner, M., Křístková, E., Doležalová, I., Beharav, A. (2012a). Genetic polymorphism in Lactuca aculeata populations and occurrence of natural putative hybrids between L. aculeata and L. serriola. Biochem. Syst. Ecol. 42:113–123.
Lebeda, A., Doležalová, I., Novotná, A. (2012b). Wild and weedy Lactuca species, their distribution, ecogeography and ecobiology in USA and Canada. Genet. Resour. Crop Evol. 59:1805–1822.
Lebeda, A., Mieslerová, B., Petrželová, I., Korbelová, P., Česneková, E. (2012c). Patterns of virulence variation in the interaction between Lactuca spp. and lettuce powdery mildew (Golovinomyces cichoracearum). Fungal Ecol. 5:670−682.
Lebeda, A., Mieslerová, B., Petrželová, I., and Korbelová, P. (2013). Host specificity and virulence variation in populations of lettuce powdery mildew pathogen (Golovinomyces cichoracearum s. str.) from prickly lettuce (Lactuca serriola). Mycol. Prog. 12:533−545.
Lebeda, A., Křístková, E., Kitner, M., Mieslerová, B., Jemelková, M., Pink, D.A.C. (2014). Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. Eur. J. Plant Pathol. 138:597–640.
Lebeda, A., Křístková, E., Kitner, M., Mieslerová, B., Pink, D.A. (2016). Wild Lactuca saligna: a rich source of variation for lettuce breeding. In: N. Maxted, M. Ehsan Dulloo and B.V. Ford-Lloyd, eds., Enhancing Crop Genepool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement, Wallingford, UK: CAB International, pp. 32–46.
Lebeda, A., Křístková, E., Doležalová, I., Kitner, M., Widrlechner, M.P. (2019a). Chapter 5. Wild Lactuca species in North America. In.: S.L. Greene,,K.A. Williams,, C.K. Khoury, M.B. Kantar and L.F. Marek, eds. North American Crop Wild Relatives, Volume 2. Cham, Switzerland: Springer, pp. 131–194.
Lebeda, A., Křístková, E., Kitner, M., Majeský, L., Doležalová, I., Khoury, C.K., Widrlechner, M.P., Hu, J., Carver, D., Achicanoy, H.A., Sosa, Ch. C. (2019b). Research gaps and challenges in the conservation and use of North American wild lettuce germplasm. Crop Sci. 59:2337–2356.
Lebeda, A., Kitner, M., Mieslerová, B., Křístková, E., Pavlíček, T. (2019c). Leveillula lactucae-serriolae on Lactuca serriola in Jordan. Phytopathol. Mediterr. 58:359–367.
Lebeda, A., Křístková, E., Kitner, M., Widrlechner, M.P., Maras, M., El-Esawi, M.A. (2022a). Egypt as one of the centers of lettuce domestication: morphological and genetic evidence. Euphytica 218: Art. No. 10.
Lebeda, A., Křístková, E., Khoury, C.K., Carver, D., Sosa, Ch. C. (2022b). Distribution and ecology of wild lettuces Lactuca serriola L. and Lactuca virosa L. in central Chile. Hacquetia 21:173–186.
Lebeda, A., Burdon, J.J. (2023). Studying wild plant pathosystems to understand crop plant pathosystems. Phytopathology, DOI: 10.1094/PHYTO-01-22-0018-PER (in press, early access October 2022)
Lindqvist, K. (1960a). Cytogenetic studies in the serriola group of Lactuca. Hereditas 46:75–151.
Lindqvist, K., (1960b). On the origin of cultivated lettuce. Hereditas 46:319–350.
Mabry, T.J., Bohlmann, F. (1977). Summary of the chemistry of the Compositae. In: V.H. Heywood, J.B. Harborne and B.L. Turner, eds., The biology and Chemistry of the Compositae, Vol. 2, London: Academic Press, pp. 1097–1104.
Mai, F., Glomb, M.A. (2016). Structural and sensory characterization of novel sesquiterpene lactones from iceberg lettuce. J. Agric. Food Chem. 64:295–301.
Maisonneuve, B. (2003). Lactuca virosa, a source of disease resistance genes for lettuce breeding: results and difficulties for gene introgression. In: T.J.L. Van Hintum, A. Lebeda, D.A.C. Pink and J.W. Schut, eds., EUCARPIA Leafy Vegetables Conference (). Noordwijkerhout, Netherlands, pp. 61–67.
Mieslerová, B., Kitner, M., Křístková, E., Majeský, L., Lebeda, A. (2020). Powdery mildews on Lactuca species – a complex view of host–pathogen interactions. CRC Crit. Rev. Plant Sci. 39:44–71.
Malarz, J., Michalska, K., Stojakowska, A. (2021). Stem lettuce and its metabolites: Does the variety make any difference? Foods 10:59.
Manning, J.C., van Herwijnen, Z.O. (2017). What has happened to South Africa’s wild lettuce? Veld &Flora 103:58–60.
McGuire, P.E., Ryder, E.J., Michelmore, R.W., Clark, R.L., Antle, R., Emery, G., Hannan, R.M., Kesseli, R.V., Kurtz, E.A., Ochoa, O., Rubatzky, V.E., Waycott, W. (1993) Genetic resources of lettuce and Lactuca species in California. An assessment of the USDA and UC collections and recommendations for long-term security. Report no. 12. University of California, Genetic Resources Conservation Program, Davis, CA.
Michalska, K., Stojakowska, A., Malarz, J., Doležalová, I., Lebeda, A., Kisiel, W. (2009). Systematic implications of sesquiterpene lactones in Lactuca species. Biochem. Syst. Ecol. 37:174–179.
Michalska, K., Szneler, E., Kisiel, W. (2010). Lactuca altaica as a rich source of sesquiterpene lactones. Biochem. Syst. Ecol. 38:1246–1249.
Michalska, K., Stojakowska, A., Kisiel, W. (2012). Phenolic constituents of Lactuca tenerrima. Biochem. Syst. Ecol. 42:32–34.
Michalska, K., Beharav, A. and Kisiel, W. (2014a). Sesquiterpene lactones from roots of Lactuca georgica. Phytochem. Lett. 10:10–12.
Michalska, K., Beharav, A., Kisiel, W. (2014b). Chemotaxonomic value of magastigmane glucosides of Cichorium calvum. Nat. Prod. Commun. 9: 311–312.
Michalska, K., Malarz, J., Stojakowska, A. (2022). Chemical constituents from Lactuca plumieri (L.) Gren. & Godr. (Asteraceae). Natural Product Research 36:5337–5341.
Michelmore, R., Ochoa, O., Wong, J. (2009). Bremia lactucae and lettuce downy mildew. In: S. Kamoun and K. Lamour, eds., Oomycete Genetics and Genomics: Diversity, Plant and Animal Interactions, and Toolbo, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 241–262.
Monge, M., Kilian, R., Anderberg, A.A., Semir, J. (2016). Two new records of Lactuca L. (Cichorieae, Asteraceae) in South America. R. bras. Bioci., Porto Alegre 14:117–123.
Nevo, E. (1995). Asian, African and European biota meet at “Evolution Canyon”, Israel: local tests of global biodiversity and genetic diversity patterns. Proc. Roy. Soc. Lond. B 262:149–155.
Nevo, E. (2017). Daniel Zohary: Naturalist, Geneticist, Evolutionist, and World Leader of Plant Domestication (1926–2016). Isr. J. Ecol. Evol. 63:1–13.
Nybom, H., Weising, K., Rotter, B. (2014). DNA fingerprinting in botany: past, present, future. Investig. Genet. 5:1
Ondřej, V., Crute, I.R., Dixon, G.R., Burdon, J.J., Martyn, R.D., Knerr, L.D., Reinink, K. (2021). Professor Aleš Lebeda at Seventy. Plant Prot. Sci. 57:255–262.
Parra, L., Maisonneuve, B., Lebeda, A., Schut, J., Christopoulou, M., Jeuken, M., McHale, L., Truco. M-J., Crute, I., Michelmore, R. (2016). Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210:309–326.
Parra, L., Nortman, K., Sah, A., Truco, M. J., Ochoa, O., & Michelmore, R. (2021). Identification and mapping of new genes for resistance to downy mildew in lettuce. Theor. Appl. Genet. 134:519–528.
Petrželová, I., Lebeda, A. (2011). Distribution of race-specific resistance against Bremia lactucae in natural populations of Lactuca serriola. Eur. J. Plant Pathol. 129:233–253.
Petrželová, I., Lebeda, A. and Beharav, A. (2011). Resistance to Bremia lactucae in natural populations of Lactuca saligna from some Middle Eastern countries and France. Ann. Appl. Biol. 159:442–455.
Rechinger, K.H. (1977). Flora Iranica. Vol. 122. Graz, Austria: Akademische Druk -u Verlagsanstalt, pp. 185–196.
Roskov, Y., Abucay, L., Orrell, T., Nicolson, D., Bailly, N., Kirk, P.M., Bourgoin, T., DeWalt, R.E., Decock, W., De Wever, A., Nieukerken, E. van, Zarucchi, J., Penev L., eds. (2018). Species 2000 & ITIS Catalogue of Life, 2018 Annual Checklist. DVD. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-917X.
Rottenberg, A. (2017). Daniel Zohary (1926–2016). Genet. Resour. Crop Evol. 64:1101–1106.
Sedlařova, M., Luhova, L., Petřivalsky, M., Lebeda, A. (2007). Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp. Plant Physiol. Biochem. 45:607–616.
Sessa, R.A., Bennett, M.H., Lewis, M.J., Mansfield, J.W., Beale, M.H. (2000). Metabolite profiling of sesquiterpene lactones from Lactuca species. J. Biol. Chem. 275:26877–26884.
Sharaf, K., Lewinsohn, D., Nevo E., Beharav, A. (2007). Virulence patterns of Bremia lactucae in Israel. Phytoparasitica 35:100–108.
Shulha, O., Zidorn, C. (2019). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: an update (2008–2017). Phytochemistry 163:149–177.
Sicard, D., Woo, S.S., Arroyo-Garcia, R., Ochoa, O., Nguyen, D., Korol, A.B., Nevo, E., Michelmore, R. (1999). Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theor. Appl. Genet. 99:405–418.
Smýkal, P., Nelson, M. N., Berger, J. D., von Wettberg, E. J. B. (2018). The impact of genetic changes during crop domestication. Agronomy 8:119.
Sochor, M, Manning, J.C., Šarhanová, P., van Herwijnen, Z., Lebeda, A., Doležalová, I. (2020). Lactuca dregeana DC. (Asteraceae: Chicorieae) – A South African crop relative under threat from hybridization and climate change. S. Afr. J. Bot. 132:146–154.
Spring, O., Gomez-Zeledon, J., Hadziabdic, D., Trigiano, R.N., Thines, M., Lebeda, A. (2018). Biological characteristics and assessment of virulence diversity in pathosystems of economically important biotrophic oomycetes. CRC Crit. Rev. Plant Sci. 37:439–495.
Stojakowska, A., Michalska, K., Malarz, J., Beharav, A., Kisiel, W. (2013). Root tubers of Lactuca tuberosa as a source of antioxidant phenolic compounds and new furofuran lignans. Food Chem. 138:1250–1255.
Stojakowska, A., Michalska, K., Kłeczek, N., Malarz, J., Beharav, A. (2018). Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: A preliminary study. J. Food Composition Anal. 69:20–24.
Šuštar-Vozlič, J., Ugrinović, K., Maras, M., Křístková, E., Lebeda, A., Meglič, V. (2021). Morphological and genetic diversity of Slovene lettuce landrace ‘Ljubljanska ledenka’ (Lactuca sativa L.). Genet. Resour. Crop Evol. 68:185–203.
Tang, C.T., Yang, J., Liu, Z.D., Chen, Y., Zeng, C. (2021). Taraxasterol acetate targets RNF31 to inhibit RNF31/p53 axis-driven cell proliferation in colorectal cancer. Cell Death Discov. 7:66.
Taylor, N.G., Kell, S.P., Holubec, V., Parra-Quijano, M., Chobot, K., Maxted, N. (2017). A systematic conservation strategy for crop wild relatives in the Czech Republic. Diversity and Distribution 23:448–462.
Thompson, R.C., Ryder, E.J. (1961). Descriptions and Pedigrees of Nine Varieties of Lettuce. 170825, USDA Technical (Tech) Bulletins (Bull). no. 1244.
van Beek, T.A., Maas, P., King, B.M., Leclercq, E., Voragen, A.G.J., de Groot, A. (1990). Bitter sesquiterpene lactones from chicory roots. J. Agric. Food Chem. 38:1035–1038
van Herwijnen, Z.O., Manning, J.C. (2017). A review of the history and taxonomy of the enigmatic southern African endemic wild lettuce Lactuca dregeana DC. (Asteraceae: Lactuceae: Lactucinae). S. Afr. J. Bot. 108: 352–358.
van Treuren, R., van Hintum, T.J.L. (2009). Comparison of anonymous and targeted molecular markers for the estimation of genetic diversity in ex situ conserved Lactuca. Theor. Appl. Genet. 119:1265–1279.
van Treuren, R., van der Arend, A.J.M., Schut, J.W. (2013). Distribution of downy mildew (Bremia lactucae Regel) resistances in a genebank collection of lettuce and its wild relatives. Plant Genet. Resour.: Characterization and Util. 11:15–25.
van Treuren, R., van Eekelen, H.D.L.M., Wehrens, R. and de Vos, R.C.H. (2018). Metabolite variation in the lettuce gene pool: towards healthier crop varieties and food. Metabolomics 14:146.
Venkatesan, R., Subedi, L., Yeo, E.J., Kim, S.Y. (2016). Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway. Neurochem. Int. 99:133–146.
Venkatesan, R., Shim, W.S., Yeo, E.J., Kim, S.Y. (2017). Lactucopicrin potentiates neuritogenesis and neurotrophic effects by regulating Ca2+/CaMKII/ATF1 signalling pathway. J. Ethnopharmacol. 198:174–183.
Voytyuk, S.O., Heluta, V.P., Wasser, S.P., Nevo, E., Takamatsu, S. (2009). Biodiversity of the Powdery Mildew Fungi (Erysiphales, Ascomycota) of Israel. A.R.A. Gantner Verlag K.-G., Ruggell, Germany, 290 pp.
Wang, X., Chen, Zhong-Hua, Yang, C., Zhang, X., Jin, G., Chen, G., Wang, Y., Holford, P., Nevo, E., Zhang, G., Dai, F. (2018). Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proc. Nat. Acad. Sci. 115(20):5223–5228.
Wang, Z. -H., Peng, H., Kilian, N. (2013). Molecular phylogeny of the Lactuca alliance (Cichorieae subtribe Lactucinae, Asteraceae) with focus on their Chinese centre of diversity detects potential events of reticulation and chloroplast capture. PLoS One 8:e82692.
Wei, T., van Treuren, R., Liu, X. et al. (2021). Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nat. Genet. 53:752–760.
Wei, Z., Bakker, F.T., Schranz, M.E. (2016). Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae) using complete chloroplast genomes and nuclear rDNA sequences. In: Z. Wei, ed., Genetic diversity and evolution in Lactuca L. (Asteraceae): From phylogeny to molecular breeding. Wageningen, the Netherlands: Wageningen Univ., pp. 99–127.
Wei, Z., Zhu, S.-X., Van den Berg, R.G., Bakker, F.T., Schranz, M.E. (2017). Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons. Genet. Resour. Crop Evol. 64:55–71.
Weng, H., He, L., Liu, X., Li, Q., Du, Y., Zheng, J., Wang, D. (2021). Natural lactucopicrin alleviates importin-α3-mediated NF-κB activation in inflammated endothelial cells and improves sepsis in mice. Biochem. Pharmacol. 186:114501.
Wesołowska, A., Nikiforuk, A., Michalska, K., Kisiel, W., Chojnacka-Wójcik, E. (2006). Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J. Ethnopharmacol. 107:254–258.
WFO (2022). World Flora Online. http://worldfloraonline.org/. Accessed on: 17 July 2022.
Wood, K. J., Nur, M., Gil, J., Fletcher, K., Lakeman, K., Gann, D., et al. (2020). Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLoS Pathogens 16:e1009012.
Yang, X., Gil, M.I., Yang, Q., Thomás-Barberán, F.A. (2022). Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf. 21:4–45.
Zidorn, C. (2008). Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69:2270–2296.
Zhang, N.W., Lindhout, P., Niks, R.E., Jeuken, M.J.W. (2009). Genetic dissection of Lactuca saligna nonhost resistance to downy mildew at various lettuce developmental stages. Plant Pathol. 58:923–932.
Zohary, D. (1991). The wild genetic resources of cultivated lettuce (Lactuca sativa L.) Euphytica 53:31–35.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 406 | 347 | 34 |
Full Text Views | 247 | 62 | 1 |
PDF Views & Downloads | 442 | 154 | 1 |
The Institute of Evolution’s (IoE’s) Wild Lettuce Gene Bank (WLGB), established in the mid 1990s, contains new and extensive collections of five wild Lactuca relatives (WLRs) originating from Israel and Armenia: L. serriola, L. aculeata, L. georgica, L. altaica, and L. saligna. The objectives of the WLGB relate to the identification, collection, distribution, conservation, and characterization of the population genetic structure of these unique germplasms for crop improvement. Comprehensive studies are ongoing to determine the taxonomic position and crossing potential of the critical mass of collected species with domesticated lettuce, L. sativa, based on: (i) select morphological and phenological characteristics; (ii) molecular data; (iii) downy mildew resistance and (iv) variation in biologically active secondary metabolite content. In this review we present an overview of our key findings and highlight the advances in knowledge on these themes. Our germplasm collections and novel results, obtained by detailed, large-scale screening of natural populations and individuals for genetic variation, will considerably advance crop breeding research and practices. In addition, we critically summarize the recent literature and findings relating to three additional WLRs: L. dregeana, L. scarioloides, and L. azerbaijanica. The main long-term purpose of our research is to facilitate broadening of the genetic variation of domesticated lettuce by using new and adaptive germplasm in interspecific hybridization of lettuce.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 406 | 347 | 34 |
Full Text Views | 247 | 62 | 1 |
PDF Views & Downloads | 442 | 154 | 1 |