The Solanum wild relatives are valuable for developing pest and disease-resistant lines in the breeding program of S. melongena (brinjal). However, breeding new varieties that are superior to the existing ones in S. melongena faces several challenges. To overcome geographical and seasonal barriers, a breeding strategy involving pollen cryopreservation may be helpful. Fifteen different Solanum species/accessions of wild relatives and two accessions from cultivated species were studied for in vitro germination and fertility. Among these S. indicum accessions exhibited the highest fresh pollen germination of 92.7 ± 0.7 (JRPH/15–154) and 88.2 ± 3.2% after 1 year and 4 months of cryostorage. In vivo fertility was estimated by quantifying fruit set after pollination with both fresh and cryopreserved pollen. The cryopreserved pollen was able to set fruit (91.5 ± 0.5 in JRPH/15–154) compared to fresh pollen (100%). Scanning Electron Microscopic studies (SEM) were conducted on both fresh and cryopreserved pollen, and various morphological parameters such as pollen length, breadth, and perimeter were recorded for all the accessions and species. These studies explore the possibility of establishing a pollen cryobank for Solanum wild species.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alexander, MP. (1980). “A Versatile Stain for Pollen, Fungi, Yeast and Bacteria”, Stain Technology, Vol. 55, pp. 13–18. https://doi.org/10.3109/10520298009067890.
Alexander, M.P. and Ganeshan, S. (1989). Preserving viability and fertility of tomato and eggplant pollen in liquid nitrogen. Indian Journal of Plant Genetic Resources, 2(2): 140–144. https://www.indianjournals.com/ijor.aspx?target=ijor:ijpgr&volume=2&issue=2&article=007.
Amina, H., Ahmad, M., Bhatti, G. R., Zafar, M., Sultana, S., Butt, M. A. and Ashfaq, S. (2020). Microscopic investigation of pollen morphology of Brassicaceae from Central Punjab‐Pakistan. Microscopy research and technique, 83(4): 446–454. https://doi.org/10.1002/jemt.23432.
Anushma, P. L., Vincent, L., Rajasekharan, P. E. and Ganeshan, S (2015) Cryopreservation of pollen in wild Solanums for resistance gene introgression into modern day eggplant cultivars. International Conference on “Low Temperature Science and Biotechnological Advances”, ICAR - National Bureau of Plant Genetic Resources, New Delhi, India, April 27–30.
Ashfaq, S., Ahmad, M., Zafar, M., Sultana, S., Bahadur, S., Ahmed, S. N. and Nazish, M. (2020). Pollen morphology of family Solanaceae and its taxonomic significance. Anais da Academia Brasileira de Ciencias, 92(3): 1–16. https://doi.org/10.1590/0001-3765202020181221.
Brewbaker, JL. and Kwack, BH. (1963). The essential role of calcium ion in pollen germination and pollen tube growth. American Journal of Botany, 50, 859–865. https://journals.tubitak.gov.tr/agriculture/vol25/iss3/4/ (accessed 20 September 2022).
Chander, S., Rajasekharan, P. E., and Kurian, R. M. (2019). Pollen storage studies in sugar apple (Annona squamosa L.) cv. Balanagar. Israel Journal of Plant Sciences, 66(3–4), 196–202.
Chopde, P. R., and Wanjari, K. B. (1974). Interspecific hybrids in Solanum. Indian J. Genet. Plant Breed. 34, 1318–1323.
Collonnier, C., Fock, I., Kashyap, V., Rotino, G. L., Daunay, M. C., Lian, Y. and Sihachakr, D. (2001). Applications of biotechnology in eggplant. Plant Cell, Tissue and Organ Culture, 65(2): 91–107. https://doi.org/10.1023/A:1010674425536.
Curuk, S. and Dayan, A. (2018). Production of diploid and amphidiploid interspecific hybrids of eggplant and Solanum torvum and pollen fertility. The Journal of Animal & Plant Sciences, 28(5): 1485–1492. http://www.thejaps.org.pk/.../31.pdf.
Daunay, M.C., Lester, R.N. and Laterrot, H. (1991). The use of wild species for the genetic improvement of Brinjal eggplant (Solanum melongena) and tomato (Lycopersicon esculentum). Solanaceae III: taxonomy, chemistry, evolution. 27: 389–413. https://worldveg.tind.io/record/17407/.
Deb, P.K., Ghosh, R., Chakraverty, R., Debnath, R., Das, L. and Bhakta, T., 2014. Phytochemical and pharmacological evaluation of fruits of Solanum indicum Linn. Int. J. Pharm. Sci. Rev. Res, 25(2), pp.28–32.
De Franca, L.V., Nascimento, W.M., Carmona, R. and De Freitas, R.A. (2009). Viability of eggplant pollen. Crop breeding and applied biotechnology, 9: 320–327.
Devi, C.P., Munshi, A.D., Behera, T.K., Choudhary, H., Gurung, B. and Saha, P. (2015). Cross compatibility in interspecific hybridization of eggplant, Solanum melongena, with its wild relatives. Scientia Horticulturae, 193: 353–358. https://doi.org/10.1016/j.scienta.2015.07.024.
Dinato, NB., Santos, IRI., Vigna, BBZ., Paulo, AF. and Favero, AP. (2020), Pollen cryopreservation for plant breeding and genetic resources conservation. Cryo Letters, 41(3): 115–127. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1126814.
Engelmann, F. (2004). Plant cryopreservation: progress and prospects. In vitro. Cell. Dev. Biol., 40: 427–433. https://doi.org/10.1079/IVP2004541.
Fassuliotis, G., and P. D. Dukes. (1972). Disease reactions of Solanum melongena and S. sisymbrifolium to meloidogyne-incognita and Verticillium albo-atrum. Journal of Nematology, 4(4): 222.
Fayos, O., Echavarri, B., Valles, M.P., Mallor, C., Garces - Claver, A. and Castillo, A.M. (2022). A simple and efficient method for onion pollen preservation: germination, dehydration, storage conditions and seed production. Scientia Horticulturae, 305:111358. https://doi.org/10.1016/j.scienta.2022.111358.
Ganeshan, S. (1985). Cryogenic preservation of grape (Vitis vinifera L.) pollen. Vitis 24, 169–173. https://core.ac.uk/download/pdf/235693053.pdf.
Ganeshan, S and Rajasekharan, P.E. (2005). Conservation and management of haploid diversity through pollen cryopreservation. J. Palynol., 41:39–48.
Ganeshan S, Rajasekharan PE, Shashikumar S. and Decruze W. (2008). Cryopreservation of pollen. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 281–332. https://doi.org/10.1007/978-0-387-72276-4_17.
Ginoya, AV., Patel, GB and Delvadiya, IR. (2022). In vitro pollen germination and viability study in Brinjal. Research square: 1–8.: https://doi.org/10.21203/rs.3.rs-1314082/v1.
Gisbert, C., Prohens, J., Raigón, M.D., Stommel, J.R. and Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1): 14–22. https://doi.org/10.1016/j.scienta.2010.12.007.
Gowthami, R., Sharma, N., Gangopadhyay, K. K., Rajkumar, S., Pathania, P., & Agrawal, A. (2021). Cryopreservation of pollen of Abelmoschus moschatus Medik. subsp. moschatus as an aid to overcome asynchronous flowering for wide hybridization with cultivated Okra [A. Esculentus (l.) Moench]. Cryoletters, 42(4), 233–244. https://www.ingentaconnect.com/content/cryo/cryo/2021/00000042/00000004/art00006.
Hecker RJ, Stanwood PC and Soulis CA. (1986). Storage of sugarbeet pollen. Euphytica, 35: 777–783. https://doi.org/10.1007/BF00028585.
Hoekstra, FA. (1995). Collecting pollen for genetic resources conservation. Collecting Plant Genetic Diversity: Technical Guidelines. IPGRI/FAO/UNEP/IUCN. CAB International, Wallingford: 527–550. http://cropgenebank.sgrp.cgiar.org/images/file/procedures/collecting1995/Chapter25.pdf.
Kalloo, G. (1993). Genetic improvement of vegetable crops eggplant Solanum melongena. L. pp-587–604.
Karipidis, C., Olympios, C., Passam, H. C. and Savvas, D. (2007). Effect of moisture content of tomato pollen stored cryogenically on in vitro germination, fecundity and respiration during pollen tube growth. J. of Horticultural Sci. and Tech., 82(1): 29–34. https://doi.org/10.1080/14620316.2007.11512195.
Karlsson, J.O.M. (2015). Measurement of Intracellular Ice Formation Kinetics by High-Speed Video Cryomicroscopy. In: Wolkers, W., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 1257. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2193-5_7.
Kashyap, V., Kumar, SV., Collonnier, C., Fusari, F., Haicour, R., Rotino, GL., Sihachakr, D. and Rajam, MV. (2003). Biotechnology of eggplant. Scientia Horticulturae, 97: 1–25. https://doi.org/10.1016/S0304-4238(02)00140-1.
Khan, S. A. and Perveen, A. (2006). Germination capacity of stored pollen of Solanum melongena L. (Solanaceae) and their maintenance. Pak. J. Bot., 38(4): 917–920. https://agris.fao.org/agris-search/search.do?recordID=PK2008000584.
Knapp, S., Vorontsova, M. S. and Prohens, J. (2013). Wild relatives of the Eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. Plos one, 8(2): e57039–12. https://doi.org/10.1371/journal.pone.0057039.
Knapp, S., Vorontsova, M.S. and Prohens, J., 2013. Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PloS one, 8(2), p.e57039.
Kulus, D. (2019). Managing plant genetic resources using low and ultra-low temperature storage: a case study of tomato. Biodiversity and conservation, 28(5): 1003–1027. https://doi.org/10.1007/s10531-019-01710-1.
Mamoudou, J., Tope, S. F., Basga, E. and Fohouo., F. T. (2021). Pollination efficiency of Apis mellifera (Hymenoptera: Apidae) on Solanum nigrum (Solanaceae) at Meskine (Maroua, Cameroon). Int. J. Biol. Chem. Sci. 15(3): 1073–1089. 10.4314/ijbcs.v15i3.18.
Musa, I., Rafii, M.Y., Ahmad, K., Ramlee, S.I., Md Hatta, M.A., Magaji, U., Muhammad, I.I., Chukwu, S.C. and Mat Sulaiman, N.N. (2021). Influence of wild relative rootstocks on eggplant growth, yield and fruit physicochemical properties under open field conditions. Agriculture, 11(10): 943. https://doi.org/10.3390/agriculture11100943.
Panse, V. G. And Sukhatme, P. V. (1967) Statistical methods for agricultural workers, ICAR, New Delhi, pp. 381. https://www.cabdirect.org/cabdirect/abstract/19561604178.
Peterson R, Slovin JP, Chen C. A simplified method for differential staining of aborted and non-aborted pollen grains. Int. J. Plant Bio. 2010; 1:e13.
Rajasekharan, S. (1970). Cytogenetic studies of the F1 hybrid Solanum indicum L.× S. melongena L. and its amphidiploid. Euphytica, 19(2): 217–224. https://doi.org/10.1007/BF01902949.
Ranil, R. H. G., Prohens, J., Aubriot, X., Niran, H.M.L., Plazas, M., Fonseka, R. M., Vilanova, S., Fonseka, H. H., Gramazio, P., Knapp, S. (2017). Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genet. Resour. Crop. Evol., 64: 1707–1722. https://doi.org/10.1007/s10722-016-0467-z.
Ranil, R.H.G., Prohens, J., Aubriot, X. et al. Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): a review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genet Resour Crop Evol 64, 1707–1722 (2017). https://doi.org/10.1007/s10722-016-0467-z.
Rotino, GL, Perri. E, Acciarri, Sunseri, F, Arpaia, S. (1997). Development of eggplant varietal resistance to insects and diseases via plant breeding. Advances in horticultural sciences, 11(4): 193–201. https://www.jstor.org/stable/42883182.
Sacks, EJ and Clair, DAS. (1996). Cryogenic storage of tomato pollen: effect on fecundity. Hort. Science., 31(3): 447–448. https://doi.org/10.21273/HORTSCI.31.3.447.
Saleem, T.M., Chetty, C., Ramkanth, S., Alagusundaram, M., Gnanaprakash, K., Rajan, V.T. and Angalaparameswari, S., 2009. Solanum nigrum Linn.-A review. Pharmacognosy reviews, 3(6), p.342.
Sekara, A., Cebula, S. and Kunicki, E. (2007). Cultivated eggplants - origin, breeding objectives and genetic resources, a review. Folia Horticulturae, 19(1): 97–114. https://www.academia.edu/download/78956635/1615477440.pdf.
Senula, A. and Keller, E. R. J. (2013). Pollen cryopreservation to support maintenance of a wild species collection of the genus Allium. II International Symposium on Plant Cryopreservation 1039: 289–296. 10.17660/ActaHortic.2014.1039.36.
Sidhu, RK. (2019). Pollen storage in vegetable crops: a review. J. of Pharmacognosy and Phytochemistry, SP1: 599–603. https://www.phytojournal.com/archives/2019/vol8issue1S/PartN/Sp-8-1-146-598.pdf.
Souza, F.V.D., Souza, E.H.D. and Silva, R.L.D. (2018). Cryopreservation of pollen grains of pineapple and other bromeliads. In Plant cell culture protocols (pp. 279–288). Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_19.
Stanley, R. G. and Linskens, H. F. (1974). Pollen: Biology, biochemistry and management. Springer-Verlag, Berlin, Germany.
Swarup, V. (1995). Genetic resources and breeding of aubergine (Solanum melongena L.). In I International Symposium on Solanaceae for Fresh Market 412: 71–79. 10.17660/ActaHortic.1995.412.6.
Syfert, M. M., Castañeda-Alvarez, N.P., Khoury, C. K., Sarkinen, T., Sosa, C. C., Achicanoy, H. A., Bernau, V., Prohens, J., Daunay, M. and Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in gene banks and many species at risk of extension. American Journal of Botany, 103(4): 635–651. https://doi.org/10.3732/ajb.1500539.
Towill LE. (1981). Liquid nitrogen preservation of pollen from tuber-bearing Solanum species. Hort. Sci., 16: 177–179. https://doi.org/10.21273/HORTSCI.16.2.177.
Vishwakarma, P.K., Vincent, L., Vasugi, C. and Rajasekharan, P.E. (2021). Effect of cryopreservation on pollen viability, fertility and morphology of different Psidium species. Cryobiology, 98: 112–118. https://doi.org/10.1016/j.cryobiol.2020.11.017.
Wightman R. (2022). An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging. Plants (Basel) Apr 20; 11(9):1113. doi: 10.3390/plants11091113. PMID: 35567113; PMCID: PMC9106016.
Yamakawa, K. and Mochizuki, H. (1979). Nature and inheritance of Fusarium wilt resistance in eggplant cultivars and Solanum species. Bull. Veg. Ornam. Crops Res. Sin., Ser. A, no. 6: 19–27 (in Japanese with English summary). https://agris.fao.org/agris-search/search.do?recordID=US201302791442.
Zhou, X., Bao, S., Liu, J., Yang, Y. and Zhuang, Y., 2018. Production and characterization of an amphidiploid derived from interspecific hybridization between Solanum melongena L. and Solanum aculeatissimum Jacq. Scientia Horticulturae, 230, pp.102–106.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 551 | 320 | 50 |
Full Text Views | 82 | 0 | 0 |
PDF Views & Downloads | 132 | 1 | 0 |
The Solanum wild relatives are valuable for developing pest and disease-resistant lines in the breeding program of S. melongena (brinjal). However, breeding new varieties that are superior to the existing ones in S. melongena faces several challenges. To overcome geographical and seasonal barriers, a breeding strategy involving pollen cryopreservation may be helpful. Fifteen different Solanum species/accessions of wild relatives and two accessions from cultivated species were studied for in vitro germination and fertility. Among these S. indicum accessions exhibited the highest fresh pollen germination of 92.7 ± 0.7 (JRPH/15–154) and 88.2 ± 3.2% after 1 year and 4 months of cryostorage. In vivo fertility was estimated by quantifying fruit set after pollination with both fresh and cryopreserved pollen. The cryopreserved pollen was able to set fruit (91.5 ± 0.5 in JRPH/15–154) compared to fresh pollen (100%). Scanning Electron Microscopic studies (SEM) were conducted on both fresh and cryopreserved pollen, and various morphological parameters such as pollen length, breadth, and perimeter were recorded for all the accessions and species. These studies explore the possibility of establishing a pollen cryobank for Solanum wild species.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 551 | 320 | 50 |
Full Text Views | 82 | 0 | 0 |
PDF Views & Downloads | 132 | 1 | 0 |