Morphological and molecular study of the genus Nosopsyllus (Siphonaptera: Ceratophyllidae). Nosopsyllus barbarus () as a junior synonym of Nosopsyllus fasciatus (Bosc d’Antic, 1800)

in Insect Systematics & Evolution
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


In the present work, a comparative morphological and molecular study of Nosopsyllus barbarus (Jordan & Rothschild 1912) and Nosopsyllus fasciatus (Bosc, d’Antic 1800) isolated from rodents from different geographical regions (Spain, Morocco, Belgium, France and Portugal) has been carried out. The Internal Transcribed Spacers 1 and 2 (ITS1, ITS2) and partial 18S rRNA, and partial cytochrome c oxidase 1 (cox1) and cytochrome b (cytb) mtDNA sequences were determined to clarify the taxonomic status of these two species and to assess intraspecific variation and inter-specific sequence differences. In addition, a phylogenetic analysis with other species of fleas using Bayesian inference was performed. We have found morphological differences between N. barbarus and N. fasciatus that did not correspond with molecular differences. Furthermore, any of the five molecular markers used in this study was able to discriminate between the two species. Thus, based on the phylogenetic and molecular study of three nuclear markers (18S, ITS1, ITS2) and two mitochondrial markers (cox1 and cytb), as well as the concatenated dataset of both species, we concluded that morphological characters traditionally used to discriminate between the two species do not provide solid arguments for considering these two “morphospecies” as two different species. Therefore, we propose N. barbarus should be considered as a junior synonym of N. fasciatus.

Insect Systematics & Evolution

An International Journal of Systematic Entomology



Acosta R. & Morrone J.J. (2013) Phylogenetics of the tribe Phalacropsyllini (Siphonaptera: Ctenophthalmidae: Neopsyllinae) based on molecular and morphological evidence. Zootaxa 3630: 333346.

Ballard J.W.O. , Whitlock M.C. (2004) The incomplete natural history of mitochondria, Molecular Ecology 13: 729744.

Beaucournu J.C. & Alcover J.A. (1984) “Siphonaptera from small terrestrial mammals in the Pituysic Islands” in Biogeography and Ecology of the Pituysic Island. Kuhbier H. , Alcover J.A. & d´Arellano Tur Guerau ed., 377392.

Beaucournu J.C. & Launay H. (1990) Les Puces (Siphonaptera) de France et du Bassin méditerranéen occidental, Faune de France, Vol. 76. Fedération Française des Sociétés des Sciences Naturelles, Paris.

Bosc L.A.G. (1800) Description d’une nouvelle espéce de puce (Pulex fasciatus). Bulletín des scíences, par la Société Philomatique, Paris, 2:156.

Brinkerhoff R.J. , Martin A.P. , Jones R.T. & Collinge S.K. (2011) Population genetic structure of the prairie dog flea and plague vector, Oropsylla hirsuta . Parasitology 138: 7179.

Cox A.J. & Hebert P.D.N. (2001) Colonization, extinction and phylogeographic patterning in a freshwater crustacean. Molecular Ecology 10: 371386.

Carew M.E. , Pettigrove V. , Cox R.L. & Hoffmann A.A. (2007) DNA identification of urban Tanytarsini chironomids (Diptera: Chironomidae). Journal of the North American Benthological Society 26: 587600.

Cutillas C. , Callejón R. , de Rojas M. , Tewes B. , Ubeda J.M. , Ariza C. & Guevara D.C. (2009) Trichuris suis and Trichuris trichiura are different nematode species. Acta Tropica 111: 299307.

De la Rua N. , Stevens L. & Dorn P.L. (2011) High genetic diversity in a single population of Triatoma sanguisuga (LeConte, 1855) inferred from two mitochondrial markers: Cytochrome b and 16S ribosomal DNA. Infection, Genetics and Evolution 11: 671677.

De Rojas M. , Mora M.D. , Úbeda J.M. , Cutillas C. , Navajas M. & Guevara D.C. (2002) Phylogenetic relationships in rhinonyssid mites (Acari: Rhinonyssidae) based on ribosomal DNA sequences: insights for the discrimination of closely related species. Parasitology Research 88: 675681.

De Rojas M. , Úbeda J.M. , Cutillas C. , Mora D. , Ariza C. & Guevara D.C. (2007) Utility of ITS1-5.8S-ITS2 and 16S mitochondrial DNA sequences for species identification and phylogenetic inference within the genus Rhinonyssus: the Rhinonyssus coniventris complex. Parasitology Research 100: 10411046.

DeSalle R. , Egan M.G. & Siddall M. (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London, Serie B, Biological Sciences 360: 19051916.

Dittmar K. & Whiting M.F. (2003) Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (CytB and CoII). Parasitology Research 91: 5559.

Drouin G. & de Sá M.M. (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Molecular Biology and Evolution 12: 481493.

Durden L.A. & Traub R. (2002) Medical and veterinary entomology, vol.7. Academic Press, San Diego, California.

Ebach M.C. & Holdrege C. (2005) More taxonomy, not DNA Barcoding. Bio-Science 55: 822823.

Edgar R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:17921797.

Erster O. , Roth A. , Wolkomirsky R. , Leibovich B. & Shkap V. (2013) Comparative analysis of mitochondrial markers from four species of Rhipicephalus (Acari: Ixodidae). Veterinary Parasitology 198: 364370.

Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.

Folmer O. , Black M. , Hoeh W. , Lutz R. & Vrijenhoek R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology 3: 294299.

Galtier N. , Nabholz B. , Glémin S. & Hurst G.D. (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology 18: 45414550.

Gamerschlag S. , Mehlhorn H. , Heukelbach J. , Feldmeier H. & D’Haese J. (2008) Repetitive sequences in the ITS1 region of the ribosomal DNA of Tunga penetrans and other flea species (Insecta, Siphonaptera). Parasitology Research 102: 193199.

Gasser R.B. , Nansen P. & Guldberg P. (1996) Fingerprinting sequence variation in ribosomal DNA of parasites by DGGE. Molecular Cellular Probes 10: 99105.

Gerbi S.A. (1986) The evolution of eukaryotic ribosomal DNA. Biosystems 19, 257258.

Giannetto S. , Virga A. & Iori A. (1997) New record of Nosopsyllus (Nosopsyllus) barbarus (Jordan and Rothschild, 1912) (Aphaniptera: Dolichopsyllidae) from Sicily. Morphology at scanning electron microscopy of N. (N.) barbarus and N. (N.) fasciatus (Bosc D’Antic, 1800). Parassitologia 39: 2932.

Gil Collado J. (1949) Pulgas españolas parásitas de roedores. Revista Ibérica de Parasitología 9: 214258.

Gissi C. , Iannelli F. & Pesole G. (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: 301320.

Hastriter M.W. & Tipton V.J. (1975) Fleas (Siphonaptera) associated with small mammals of Morocco. The Journal of the Egyptian Public Health Association 50: 79169.

Hebert P.D.N. , Cywinska, A. , Ball S.L. & De Waard J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London 270: 313321.

Hebert P.D. , Stoeckle M.Y. , Zemlak T.S. & Francis C.M. (2004) Identification of birds through DNA barcodes. PLoS Biology 2: 312.

Holland G.P. (1964) Evolution, classification, and host relationships of Siphonaptera. Annual Review of Entomology 9: 123146.

Huelsenbeck J.P. & Rannala B. (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276: 227232.

Jordan K. & Rothschild N.C. (1912) On Siphonaptera collected in Algeria. Novitates Zoologicae 19: 357372.

Kaewmongkol G. , Kaewmongkol S. , McInnes L.M. et al. (2011) Genetic characterization of flea derived Bartonella species from native animals in Australia suggest host-parasite co-evolution. Infection, Genetics and Evolution 11: 18681872.

Lawrence A.L. , Brown G.K. , Peters B. , Spielman D.S. , Morin-Adeline M. & Slapeta J. (2014) High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers. Medical and Veterinary Entomology 28: 330336.

Lewis R.E. (1967) Contributions to a taxonomic revision of the genus Nosopsyllus Jordan, 1933. Journal of Medical Entomology 4: 123142.

Lewis R.E. (1990) The Cceratophyllidae: Currently Aceppted Valid Taxa (Insecta: Siphonaptera). Ed. Koenigstein . Koeltz Scientific Books, Germany.

Lewis R.E. (1993) Notes on the geographical distribution and host preferences in the order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current classification of the order. Journal of Medical Entomology 30: 239256.

Lopez-Osorio F. , Pickett K.M. , Carpenter J.M. , Ballif B.A. & Agnarsson I. (2014) Phylogenetic relationships of yellow jackets inferred from nine loci (Hymenoptera: Vespidae, Vespinae, Vespula and Dolichovespula). Molecular Phylogenetics and Evolution 73: 190201.

Luchetti A. , Trentini M. , Pampiglone S. , Fiorawanti M.L. & Mantovani B. (2007) Genetic variability of Tunga penetrans (Siphonaptera, Tungidae) and fleas across South America and Africa. Parasitology Research, 100: 593598.

Márquez F.J. & Salas R. (1990) Presencia de Echidnophaga murina (Siphonaptera, Pulicidae) y de Nosopsyllus barbarus (Siphonaptera, Ceratophyllidae) en la Península Ibérica. Revista Ibérica de Parasitología 50: 117121.

Marangi M. , Cantacessi C. , Sparagano O.A. , Camarda A. & Giangaspero, A. (2014) Molecular characterization and phylogenetic inferences of Dermanyssus gallinae isolates in Italy within an European framework. Medical and Veterinary Entomology 28: 447452.

Marrugal A. , Callejón R. , de Rojas M. , Halajian A. & Cutillas C. (2013) Morphological, biometrical and molecular characterization of Ctenocephalides felis and Ctenocephalides canis isolated from dogs from different geographical regions. Parasitology Research 112: 22892298.

McKern J.A. , Szalanski A.L. , Austin, J.W. & Gold, R.E. (2008) Genetic diversity of field populations of the cat flea, Ctenocephalides felis, and the human flea, Pulex irritans, in the South Central United States . Journal of Agricultural and Urban Entomology 25: 259263.

Monje L.D. , Quiroga M. , Manzoli D. et al. (2013) Sequence analysis of the internal transcribed spacer 2 (ITS2) from Philornis seguyi (García, 1952) and Philornis torquans (Nielsen, 1913) (Diptera: Muscidae). Systematic Parasitology 86: 4153.

Moore W.S. (1995) Inferring phylogenies from mtDNA variation mitochondrial-gene trees versus nuclear-gene trees. Evolution 49: 718726.

Navajas M. & Navia D. (2010) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Experimental & Applied Acarology 51: 257271.

Posada D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.

Posada, D. & Buckley T.R. (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793808.

Rambaut A. & Drummond A. (2007). Tracer v1.6. Available from

Ronquist F. & Huelsenbeck J.P. (2003) MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.

Saccone C. , DeCarla G. , Gissi C. , Pesole G. & Reynes A. (1999) Evolutionary genomics in the Metazoa: the mitochondrial DNA as a model system. Gene 238: 195210.

Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. & Kumar S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 27312739.

Tautz D. , Acrtander P. , Minelli A. , Thomas R.H. , Vogler A.P. (2003) A plea for DNA taxonomy. Trends in Ecology & Evolution 18: 7074.

Vences M. , Thomas M. , Van der Meijden A. , Chiari Y. & Vieites D.R. (2005) Comparative Performance of the 16S rRNA Gene in DNA Barcoding of Amphibians. Frontiers in Zoology 2: 5.

Vobis M. , D’Haese, J., Mehlhorn H. et al. (2004) Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitology Research 94: 219226.

Ward R.D. , Zemlak T.S. , Innes B.H. , Last P.R. , Hebert P.D.N. (2005) DNA Barcoding Australia’s Fish Species. Philosophical Transactions of the Royal Society of London 360: 18471857.

Wares J.P. & Cunningham C.W. (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 12: 24552469.

Whiting M.F. , Whiting A.S. , Hastriter M.W. & Dittmar K. (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24: 677707.

Yong H.S. , Lim P.E. , Tan J. , Ng Y.F. , Eamsobhana P. & Suana I.W. (2014) Molecular phylogeny of Orthetrum dragonflies reveals cryptic species of Orthetrum pruinosum. Scientific Reports 4: 5553.

Zagoskin M.V. , Lazareva V.I. , Grishanin A.K. & Mukha D.V. (2014) Phylogenetic information content of Copepoda ribosomal DNA repeat units: ITS1 and ITS2 impact. Biomed Research International doi: 10.1155/2014/926342.

Zhang D.-X. & Hewitt G.M. (1997) Assessment of the universality and utility of a set of conserved mitochondrial primers in insects. Insect Molecular Biology 6: 143150.

Zhu Q. , Hastriter M.W. , Whiting M.F. & Dittmar K. (2015) Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Molecular Phylogenetics and Evolution 90: 129139.

Zurita A. , Callejón R. , De Rojas M. , Gómez-López M.S. & Cutillas C. (2015) Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: taxonomy and phylogeny. Bulletin of Entomological Research 104: 704711.

Zurita A. , Callejón R. , De Rojas M. , Halajian A. & Cutillas C. (2016) Ctenocephalides felis and Ctenocephalides canis: introgressive hybridization?. Systematic Entomology 41: 567579.


  • Morphological generic characteristics of Nosopsyllus spp., N. barbarus and N. fasciatus. a- Meta tibia with an apical tooth (arrow). b- Apical setae (arrowed) of second segment of hind tarsus not reaching back as far as end of third segment. c- Ocular row (red arrow) with uppermost setae inserted in front of well-developed eye and pronotal ctenidium (blue arrow). d- Head with a pointed frontal tubercle (arrow). e- Arrow points a lateral setae row of front femur. f- Tergites with two setae row (red and blue arow). g- Male of N. fasciatus ventral margin of telomere, red arrow points the lower setae of the apex and blue arrow points the protruding apical tooth. h- Male of N. barbarus ventral margin of telomere, arrow points the lower setae of the apex. i- Female of N. fasciatus, arrow points the ventral margin of sternum VII. j- Female of N. barbarus, arrow points an apical lobe on the ventral margin of sternum VII.

    View in gallery
  • Phylogenetic tree of Nosopsyllus barbarus and Nosopsyllus fasciatus from different geographical origins (see Table 1) based on concatenated partial 18S ribosomal RNA gene, and partial cytochrome c-oxidase 1 (cox1) and cytochrome b (cytb) genes of mitochondrial DNA inferred using the Bayesian (B) method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) is shown on the branches. The Bayesian Posterior Probabilities (BPP) are percentage converted. (●) Flea male individuals showing morphological characteristics overlapping both species.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 105 105 35
Full Text Views 18 18 8
PDF Downloads 6 6 4
EPUB Downloads 5 5 3