Three new species of Bathysciola Jeannel, 1910 (Leiodidae, Cholevinae, Leptodirini) from caves in Central Italy, comparing morphological taxonomy with molecular phylogeny

in Insect Systematics & Evolution
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The genus Bathysciola is widely distributed in the northern Mediterranean region, although its range extends east to the Caucasus and Iran. More than 130 species belonging to this genus are actually known in the whole geographic distribution area and 45 species are distributed in continental and insular Italy. The species belonging to the Bathysciola sisernica Cerruti and Patrizi, 1952 species group occur in the Central-Southern Italian Apennines and Pre-Apennines. This group consists of seven species, four of which (B. sisernica, B. delayi Latella and Rampini, 1994, B. rampinii Latella, 2002, B. sbordoni Rampini and Latella, 1993) were already known to science and three are described herein, Bathysciola fabiolae sp. nov., Bathysciola octaviani sp. nov. , and Bathysciola valeriae sp. nov., markedly increasing the knowledge on the distribution of this genus in Central Italy. A morphological analysis was carried out based on diagnostic characters usually used to distinguish different taxa, and including both genitalia and external traits. Based on morphological characters, we reconstructed the phylogeny of this group of species, comparing them with the species belonging to other phyletic lineages, such as B. derosasi Jeannel, 1914, B. georgi Cerruti, Patrizi, 1952, B. vignai Sbordoni and Rampini, 1978, and B. sarteanensis sarteanensis (Bargagli, 1870). Results suggested that morphological traits show a clear taxonomic signal but a poor phylogenetic signal. To better understand the relationships within this group of species, we performed a molecular analysis by sequencing three mitochondrial genes, 12S rRNA, 16S rRNA, partially sequenced and the entire gene of COI. Molecular markers were used to infer phylogenetic relationships among the Bathysciola sisernica species group and to reconstruct the historical processes that shaped their current geographic distribution. Results showed that these species became isolated in very ancient times, showing very high genetic differentiation.

Insect Systematics & Evolution

An International Journal of Systematic Entomology

Sections

References

Archie J.W. (1989) Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Systematic Zoology 38: 253269.

Bargagli P. (1870) Escursioni entomologiche sulla Montagna di Cetona. Bollettino della Società entomologica italiana 2: 169176.

Bremer K. (1994) Branch support and tree stability. Cladistics 10: 295304.

Caccone A. & Sbordoni V. (2001) Molecular biogeography of cave life: a study using mitochondrial DNA from Bathysciine beetles. Evolution 55(1), 122130.

Cerruti M. & Patrizi S. (1952) Diagnosi preliminare di due nuove Bathysciinae cavernicole del Lazio (Coleoptera, Catipoidae). Bollettino della Società Entomologica Italiana 82: 9293.

Cieslak A. , Fresneda J. & Ribera I. (2014) Life-history specialization was not an evolutionary dead-end in Pyrenean cave beetles. Proceedings of the Royal Society B: Biological Sciences 281: 20132978.

Darriba D. , Taboada. G.L. , Doallo R. , Posada D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772.

Drummond A.J. & Rambaut A.J. (2007) BEAST v1.4.7. Bayesian Evolutionary Analysis Sampling Trees. Computer program. Available at http://beast.bio.ed.ac.uk.

Drummond A.J. , Ho S.H.W. , Phillips M.J. & Rambaut A. (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4, 699710.

Farris J.S. (1989) The retention index and the rescaled consistency index. Cladistics 5: 417419.

Felsenstein J. (1981) Evolutionary tree from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368376.

Folmer O. , Black M.B. , Hoch W. , Lutz R.A. & Vrijehock R.C. (1994) DNA primers for amplification of mitochondrial Cytochrome c Oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294299.

Fresneda J. & Salgado J.M. (2006) The genus Bathysciola Jeannel, 1910 in the Iberian Peninsula and Pyrenees. Taxonomic revision of sections IV, VI and VII (Jeannel, 1924) (Coleoptera, Cholevidae, Leptodrini). Graellsia 62, 1060.

Fresneda J. , Salgado J.M. , Ribera I. (2007) Phylogeny of western Mediterranean Leptodirini, with an emphasis on genital characters (Coleoptera: Leiodidae: Cholevinae). Systematic Entomology 32: 332358.

Giachino P.M. (1988). Nuove specie di Bathysciola Jeannel, 1910, delle Alpi Occidentali (Coleoptera: Catopidae, Bathysciinae). Bollettino del Museo Regionale di Scienze Naturali di Torino 6: 251277.

Giachino P.M. , Vailati D. & Casale A. (1998). Major questions in the phylogeny and biogeography of Cholevidae (Coleoptera), with emphasis on the subfamily Leptodirinae. Phylogeny and Evolution of Subterranean and Endogean Cholevidae (= Leiodidae, Cholevinae). In: Giachino P.M. & Peck S.B. (eds) Proceedings of XX I. C.E. Firenze, 1996, Atti del Museo Regionale di Scienze Naturali, Torino: pp. 179209.

Giachino P.M. & Vailati D. (2010) The subterranean environment. Hypogean life, concepts and collecting techniques. WBA Handbooks 3, 130 pp.

Gu X. , Fu Y.X. & Li W.H. (1995) Maximum likelihood estimation of heterogeneity of substitution rate among nucleotide sites. Molecular Biology and Evolution 12, 546557.

Guéorguiev V.B. (1976) Recherches sur la taxonomie, la classification et la phylogénie des Bathysciinae (Col. Catopidae). Academia Scientiarum et Artium Slovenica , Razprave Dissertations 19: 159.

Guindon S. & Gascuel O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696704.

Harding E. (1971) The probabilities of rooted tree-shapes generated by random bifurcation. Advances in Applied Probability 3: 44.

Hebert P.D.N. , Cywinska A. , Ball S. & deWaard J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B, 270: 313321.

Ho S.Y.W. , Phillips M.J. , Drummond A.J. , Cooper A. (2005) Accuracy of Rate Estimation Using Relaxed-Clock Models with a Critical Focus on the Early Metazoan Radiation. Molecular Biology and Evolution 22(5):13551363. doi: 10.1093/molbev/msi125.

Huelsenbeck J.P. & Ronquist F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.

Jeannel R. (1910a) Essai d’une nouvelle classification des Silphides cavernicoles. Archives de Zoologie Expérimentale et Générale 45: 148.

Jeannel R. (1910b) Réponse a de récentes critiques sur la nouvelle classification des Bathysciinae (Col. Silphidae). Bulletin de la Société Entomologique de France, Séances, 15: 359365.

Jeannel R. (1911) Révision des Bathysciinae (Coleoptéres, Silphides). Morphologie, distribution géographique, Systématique. Archives de Zoologie Expérimentale et Génèrale 47: 1641.

Jeannel R. (1914) Nouvelles espéces de Bathysciinae d’Italie et de Sardaigne (Col. Silphidae). Bulletin de la Société entomologique de France 19: 200203.

Jeannel R. (1922) La variation des piéces copulatrices chez les Coléoptéres. Comptes-Rendus de l’Académie des Sciences Naturelles 174: 324327.

Jeannel R. (1924) Monographie des Bathysciinae. Archives de Zoologie Expérimentale et Génèrale 63: 1436.

Jeannel R. (1955) L’édéage, initiation aux recherches sur la systématique des Colèoptères. Publications du Museum National d’Histoire Naturelle, Paris, 16: 1155.

Jobb G. , von Haeseler A. & Strimmer K. (2004) TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evolutionary Biology, 4, 1827.

Kluge A.G. & Farris J.S. (1969) Quantitative phyletics and the evolution of anurans. Systematic Zooogy 18, 132.

Kocher T.D. , Thomas W.K. , Meyer A. , Edwards S.V. , Pääbo S. , Villablanca F.X. & Wilson A.C. (1989) Dynamics of Mitochondrial DNA Evolution in Animals: Amplification and Sequencing with Conserved Primers. Proceedings of the National Academy of Sciences of the United States of America 86, 61966200.

Lanave C. , Preparata C. , Saccone C. & Serio G. (1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 8693.

Laneyrie R. (1967) Nouvelle classification des Bathysciinae (Col. Catopidae). Annales de Spéléologie, 22: 585645.

Latella L. (2002). Un nuovo leptodirino dei Monti Aurunci (Coleoptera, Cholevidae). Bollettino del Museo Civico di Storia Naturale di Verona, Botanica Zoologia 26: 129135.

Latella L. (2015) Coleotteri Leiodidi Colevini. In: Latella L. & Gobbi M. 2015La fauna del suolo: tassonomia, ecologia e metodi di studio dei principali gruppi di invertebrati italiani. 2. edizione. Quaderni del Museo delle Scienze, 3: 165175.

Latella L. & Rampini M. (1994) Bathysciola delayi, nuova specie di Leptodirino dei Monti Lepini (Coleoptera, Cholevidae). Fragmenta Entomologica 26: 141150. Losos J. & Adler F. (1995) Stumped by tree? A generalised null model for patterns of organismal diversity. American Naturalist 145: 329.

Lunt D.H. , Zhang D.X. , Szymura J.M. & Hewitt G.M. (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5, 153165.

Müller K. (2005) The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. BMC Evolutionary Biology, 5:58.

Newton A.F. (1998) Phylogenetic problems, current classification and generic catalog of World Leiodidae (including Cholevidae). In: Giachino P.M. & Peck S.B. (eds.), Phylogeny and Evolution of Subterranean and Endogean Cholevidae (=Leiodidae Cholevinae). Proceedings of a Symposium (30 August, 1996, Florence, Italy). XX International Congress of Entomology. Atti Museo regionale di Scienze naturali: pp. 41177.

Papadopoulou A. , Anastasiou I. & Vogler A.P. (2010) Revisiting the Insect Mitochondrial Molecular Clock: The Mid-Aegean Trench Calibration. Molecular Biology and Evolution 27(7): 16591672.

Perreau M. (2000) Catalogue des Coléoptéres Leiodidae et Platypsyllinae. Mémoires de la Société Entomologique de France 4: 1460.

Perreau M. (2015) Leidodidae. Catalogue of Palaearctic Coleoptera, Vol. 2 (ed. by Löbl I. & Löbl D. ). Revised and updated edition. Brill, Leiden, Boston, pp. 180291.

Rambaut A. & Drummond A.J. (2007) Tracer v.1.5 (computer program) Available at: http://evolve.zoo.ox.ac.uk/Evolve/Software.html.

Rampini M. & Latella L. (1993) Una nuova Bathysciola dei Monti Ausoni (Coleoptera, Cholevidae). Fragmenta Entomologica 24 (2): 165172.

Sbordoni V. , Rampini M. & Cobolli M. (1982) Coleotteri Catopidi cavernicoli italiani. Lavori della Società italiana di Biogeografia (nuova serie) 7 (1978): 255536.

Simon C. , Frati F. , Beckenbach A. , Crespi B. , Liu H. & Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.

Swofford D.L. (2002) PAUP*. Phylogenetic Analysis using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, United States.

Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. & Higgins D.G. (1997) The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 48764882.

Vailati D. (1988) Studi sui Bathysciinae delle Prealpi Centrooccidentali. Revisione Sistematica, Ecologia, Biogeografia della ‘Serie Filetica di Boldoria’ (Coleoptera, Catopidae). Monografie di ‘Natura Bresciana’ 11: 1331.

Yang Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39: 306314.

Zoia S. & Rampini M. (1994) Leptodirinae del Caucaso e dell’Iran settentrionale (Coleoptera Cholevidae). Revue suisse de Zoologie 101: 771827.

Zoia S. & Latella L. (2006) Insecta Coleoptera Cholevidae and Platipsyllidae. In: Ruffo S. & Stoch F. (eds.). Checklist and distribution of the Italian fauna. Memorie del Museo Civico di Storia Naturale di Verona , 2.Serie, Sezione Scienze della Vita 17: 177180, with data on CD-ROM.

Figures

  • Distribution map of the Bathysciola sisernica species group.

    View in gallery
  • a, Bathysciola sarteanensis, male; b, Ovobathysciola majori, male; c, Bathysciola sbordonii, male, right foreleg; d, Bathysciola octaviani, male, right forale; e, Bathysciola delayi, male, suture between the mesoventrite and the anteromedian process of the metaventrite; f, Ovobathysciola majori, male, suture between the mesoventrite and the anteromedian process of the metaventrite. Scale bars 0.25 mm.

    View in gallery
  • a, Bathysciola derosasi, aedeagus in dorsal view; b, Bathysciola fabiolae, internal sac of the aedeagus in dorsal view; c, Bathysciola vignai, aedeagus in dorsal view; d, Bathysciola sarteanensis, apex of the aedeagus and parameres; e, Bathysciola sbordonii, apex of the aedeagus and parameres. Scale bars: a, b, c, e, 0.25 mm; d, 0.1 mm.

    View in gallery
  • a, Bathysciola sbordonii, spermatheca; b, Bathysciola fabiolae, spermatheca; c, Bathysciola derosasi, spermatheca; d, Bathysciola valeriae, spermatheca. Scale bar 0.2 mm.

    View in gallery
  • Distribution of genetic distance values (p-distances) in the species of Bathysciola considered in this study.

    View in gallery
  • Relationships among species of Bathysciola inferred by Bayesian analysis and using molecular characters. Values above the branches indicate support values: 1) posterior probabilities (PP), and bootstrap values for ML (2) and MP (3) analyses, respectively. Bremer supports (D) are also reported.

    View in gallery
  • Divergence times among species of Bathysciola inferred by Bayesian analysis using a relaxed molecular clock. Bars at the nodes represent the 95% highest posterior density (HPD) credibility interval.

    View in gallery
  • Relationships among species of Bathysciola based on morphological traits. A, MP tree based on taxonomic characters; B, Bayesian tree based on both taxonomic traits and DNA barcode. Values above the branches indicate BP and PP values, respectively.

    View in gallery
  • Bathysciola fabiolae. Male habitus. Scale bar 1 mm.

    View in gallery
  • Bathysciola fabiolae. A, male, aedeagus in dorsal view; B, male, aedeagus in lateral view; C, male, right antenna; D, female, spermatheca; E, male, mesosternal keel; F, male, right foreleg. Scale bars 0.25 mm.

    View in gallery
  • Bathysciola octaviani. Male habitus. Scale bar 1 mm.

    View in gallery
  • Bathysciola octaviani. A, male, aedeagus in dorsal view; B, male, aedeagus in lateral view; C, male, right antenna; D, female, spermatheca; E, male, mesosternal keel; F, male, right foreleg. Scale bars 0.25 mm.

    View in gallery
  • Bathysciola valeriae. Male habitus. Scale bar 1 mm.

    View in gallery
  • Bathysciola valeriae. A, male, aedeagus in dorsal view; B, male, aedeagus in lateral view; C, male, right antenna; D, female, spermatheca; E, male, mesosternal keel; F, male, right foreleg. Scale bars 0.25 mm.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 7 7 4
Full Text Views 6 6 6
PDF Downloads 0 0 0
EPUB Downloads 0 0 0