Ageniella is the second-most diverse spider wasp genus in Ageniellini (Pepsinae). The Ageniella (Ageniella) accepta species-group is found from Canada to Panama and is composed of three Nearctic species: A. accepta (Cresson), A. blaisdelli (Fox), and A. conflicta Banks. Within this group, species-level identification is difficult, because diagnostic characters are questionable, and subjective for both males and females. Furthermore, sexes of each species are not reliably associated. Herein, we investigate sex associations and the validity of described species within the A. accepta species-group based on three molecular markers (cytochrome oxidase I, wingless, long-wavelength rhodopsin) by using maximum likelihood and Bayesian phylogenetic analyses, and species-delimitation approaches. Additionally, we mapped 12 morphological traits onto the molecular phylogeny to discuss evolution of diagnostic characters. We concluded that the three species of the A. accepta species-group are actually a single, wide-ranging species with strong geographical signal. Moreover, our results suggest introgression at the mitochondrial level.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Beaulieu J.M. & O’Meara B.C. & Donoghue M.J. (2013) Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in Campanulid Angiosperms. Systematic Biology 62(5): 725–737. 10.1093/sysbio/syt034.
Brower A.V.Z. & DeSalle R. (1998) Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Molecular Biology 7(1): 73–82. DOI: 10.1046/j.1365-2583.1998.71052.x.
Drummond A.J. , Ho S.Y.W. , Phillips M.J. & Rambaut A. (2006) Relaxed Phylogenetics and Dating with Confidence. Plos Biology 4(5): e88. Doi:10.1371/journal.pbio.0040088.
Drummond A.J. & Rambaut A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. Doi:10.1186/1471-2148-7-214.
Drummond A.J. , Suchard M.A. , Xie D. & Rambaut A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology Evolution 29: 1969–1973.
Ferguson W.E. (1962) Biological characteristics of the mutillid subgenus Photopsis Blake and their systematic values (Hymenoptera). University of California Publications in Entomology. 27: 1–92.
Hebert P.D.N. , Penton E.H. , Burns J.M. , Janzen D.H. & Hallwachs W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences USA 101: 14812–14817.
Folmer O. , Black M. , Hoeh W. , Lutz R. & Vrijenhoek R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
Gehara M. , Barth A. , Oliveira E.F. , Costa M.A. , Haddad C.F.B. & Vences M. (2017) Model-based analyses reveal insular population diversification and cryptic frog species in the Ischnocnema parva complex in the Atlantic forest of Brazil. Molecular Phylogenetics & Evolution 112, 68–78. https://doi.org/10.1016/j.ympev.2017.04.007.
Knowles L.L. & Carstens B.C. (2007) Delimiting species without monophyletic gene trees. Systematic Biology 56(6): 887–95.
Kurczewski F.E. & Edwards G.B. (2012) Hosts, Nesting Behavior, and Ecology of Some North American Spider Wasps (Hymenoptera: Pompilidae). Southeastern Naturalist 11: 1–72.
Lanfear R. , Calcott B. , Ho S.Y.W. & Guindon S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology & Evolution 29: 1695–701.
Mardulyn P. & Cameron A.S. (1999) The major Opsin in bees (Insecta: Hymenoptera): a promising nuclear gene for higher level phylogenetics. Molecular Phylogenetic & Evolution 12: 168–176.
Masters B.C. , Fan V. & Ross H.A. (2011) Species Delimitation - a Geneious plugin for the exploration of species boundaries. Molecular Ecology Resources 11: 154–157.
Mirarab S. , Reaz R. , Bayzid M.S. , Zimmermann T. , Swenson M.S. & Warnow T. (2014) ASTRAL: Genome-Scale Coalescent-Based Species Tree. Bioinformatics 30(17): i541–i548. doi:10.1093/bioinformatics/btu462.
Mirarab S. & Warnow T. (2015) ASTRAL-II: Coalescent-Based Species Tree Estimation with Many Hundreds of Taxa and Thousands of Genes. Bioinformatics 31(12): i44–i52. doi:10.1093/bioinformatics/btv234.
Mirarab S. , Bayzid M.S. & Warnow T. (2016) Evaluating Summary Methods for Multilocus Species Tree Estimation in the Presence of Incomplete Lineage Sorting. Systematic Biology 65(3): 366–380. doi: 10.1093/sysbio/syu063.
Mueller R.L. (2006) Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Systematic Biology 55(2): 289–300. DOI: 10.1080/10635150500541672.
Paradis E. , Claude J. & Strimmer K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.
Pilgrim E. , von Dohlen C.D. & Pitts J.P. (2008) Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zoologica Scripta 37: 539–560.
de Queiroz K.D. (2007) Species concepts and species delimitation. Systematic Biology 56(6): 879–886. https://doi.org/10.1080/10635150701701083.
Rambaut A. , Suchard M.A. , Xie D. & Drummond A.J. (2014) Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer.
Rannala B. & Yang Z. (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164(4): 1645–1656.
Rodriguez J. , von Dohlen C.D. & Pitts J.P. (2014) Assessing species boundaries and sex-associations in the genus Drepanaporus (Hymenoptera: Pompilidae), with comparison of the utility of cytochrome c oxidase I and a nuclear molecular marker, and the description of a new species of Drepanaporus. Annals of the Entomological Society of America 107(4): 709–720.
Ross K.G. , Gotzek D. , Ascunce M.S. & Shoemaker D.D. (2010) Species delimitation: a case study in a problematic ant taxon. Systematic Biology 59(2): 162–184. DOI:10.1093/sysbio/syp089.
Ronquist F. & Huelsenbeck J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–4.
Shimizu A. , Wasbauer M.S. & Takami Y. (2010). Phylogeny and the evolution of nesting behaviour in the tribe Ageniellini (Insecta: Hymenoptera: Pompilidae). Zoological Journal of the Linnean Society 160(1): 88–117.
Sukumaran J. & Holder M.T. (2010) DendroPy: A Python library for phylogenetic computing. Bioinformatics 26: 1569–1571.
Townes H. (1957) Neartic wasps of the subfamilies Pepsinae and Ceropalinae. United Sates National Museum Bulletin 209: 1–286.
Vargas-Rodriguez Y.L. , Platt W.J. , Urbatsch L.E. & Foltz D.W. (2015) Large scale patterns of genetic variation and differentiation in sugar maple from tropical Central America to temperate North America. BMC Evolutionary Biology 15(1): 257. DOI 10.1186/s12862-015-0518-7.
Waichert C. , Rodriguez J. , Wasbauer M. , von Dohlen C.D. & Pitts J.P. (2015a) Molecular phylogeny and systematics of spider wasps (Hymenoptera: Pompilidae): redefining subfamily boundaries and the origin of the family. Zoological Journal Linnaean Society 175: 271–287.
Waichert C. , von Dohlen C.D. & Pitts J.P. (2015b) Resurrection, revision and molecular phylogenetics of Eragenia Banks with implications for Ageniellini systematics (Hymenoptera: Pompilidae). Systematic Entomology 40(2): 291–489. Doi: 10.1111/syen.12101.
Waichert C. , Colombo W.D. , von Dohlen C.D. & Pitts J.P. (2018) Taxonomic contributions to Ageniella Banks, 1912 (Hymenoptera: Pompilidae) from Brazil. Zootaxa 4403(1): 133–153. https://doi.org/10.11646/zootaxa.4403.1.8.
Wilson J.S. & Pitts J.P. (2008). Revision of velvet ant genus Dilophotopsis Schuster (Hymenoptera: Mutillidae) by using molecular and morphological data, with implications for desert biogeography. Annals of the Entomological Society of America 101: 514–524.
Wilson J.S. & Pitts J.P. (2010) Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: A resource for biologists. Progress in Physical Geography 34: 419–441.
Wilson J.S. & Pitts J.P. (2012) Identifying Pleistocene refugia in North American cold deserts using phylogeographic analyses and ecological niche modeling. Diversity and Distribution 18: 1139–1152.
Yang Z. & Rannala B. (2010) Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences USA 107(20): 9264–9269. 10.1073/pnas.0913022107.
Zwickl D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Dissertation, The University of Texas, Austin, Texas.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 754 | 114 | 16 |
Full Text Views | 42 | 1 | 0 |
PDF Views & Downloads | 71 | 4 | 0 |
Ageniella is the second-most diverse spider wasp genus in Ageniellini (Pepsinae). The Ageniella (Ageniella) accepta species-group is found from Canada to Panama and is composed of three Nearctic species: A. accepta (Cresson), A. blaisdelli (Fox), and A. conflicta Banks. Within this group, species-level identification is difficult, because diagnostic characters are questionable, and subjective for both males and females. Furthermore, sexes of each species are not reliably associated. Herein, we investigate sex associations and the validity of described species within the A. accepta species-group based on three molecular markers (cytochrome oxidase I, wingless, long-wavelength rhodopsin) by using maximum likelihood and Bayesian phylogenetic analyses, and species-delimitation approaches. Additionally, we mapped 12 morphological traits onto the molecular phylogeny to discuss evolution of diagnostic characters. We concluded that the three species of the A. accepta species-group are actually a single, wide-ranging species with strong geographical signal. Moreover, our results suggest introgression at the mitochondrial level.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 754 | 114 | 16 |
Full Text Views | 42 | 1 | 0 |
PDF Views & Downloads | 71 | 4 | 0 |