Cryptic species represent a substantial fraction of the diversity of Drosophilidae, hampering studies on species ecologies and their evolution. Anthophilous species within the Drosophila lutzii group encompass some of the most widely distributed Neotropical lineages. Nevertheless, their ranges, ecologies, divergence times, and phylogenetic relationships are largely unknown. In this study, we analyzed the cryptic diversity of the lutzii species complex occurring in Southern Brazil and shed light on the ecological and evolutionary processes underlying their current patterns of coexistence. We used an integrative approach, evaluating molecular, ecological, and morphological traits under an evolutionary ecology framework. We documented the unexpected occurrence of D. alei in Southern Brazil, whose range was only known for the Andean region. Our phylogenetic analysis indicated that despite morphological similarities, D. alei is more closely related to D. denieri than to D. lutzii, and that divergence among these three species dates back to the Neogene (7.3 Mya). Niche modeling suggests that D. denieri and D. lutzii populations expanded their ranges and were established in Southern Brazil during the Quaternary (150 kya), being affected by similar paleoclimatic events. On the other hand, D. alei shows distinct abiotic requirements than D. denieri and D. lutzii, and environmental distribution models suggested a significant reduction in its suitable areas during the Quaternary, especially in Southern Brazil. This suggests that the current sympatry observed in this region likely reflects a secondary contact between the three species resulting from niche divergence processes. Altogether, these results advance the understanding of the distribution and phylogenetic relationships of Neotropical anthophilous Drosophila, revealing the interplay between ecological and historical factors in their speciation.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Adams, D.C. & Otarola-Castillo, E. (2013) Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4: 393–399.
Aguilar-Velasco, R.G., Poteaux, C., Meza-Lázaro, R., Lachaud, J.P., Dubovikoff, D. & Zaldívar-Riverón, A. (2016) Uncovering species boundaries in the Neotropical ant complex Ectatomma ruidum (Ectatomminae) under the presence of nuclear mitochondrial paralogues. Zoological Journal of the Linnean Society 178: 226–240.
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.
Araújo, M.B., Nogués-Bravo, D., Diniz-Filho, J.A.F., Haywood, A.M., Valdes, P.J. & Rahbek, C. (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31: 8–15.
Bächli, G., Viljoen, F., Escher, S.A. & Saura, A. (2004) The Drosophilidae (Diptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica 39: 1–362.
Bächli, G. (2020). TaxoDros: The database on taxonomy of Drosophilidae. http://taxodros.uzh.ch (accessed on 01 Feb 2020).
Baeza, J.A. & Prakash, S. (2019) An integrative taxonomic and phylogenetic approach reveals a complex of cryptic species in the ‘peppermint’ shrimp Lysmata wurdemanni sensu strico. Zoological Journal of the Linnean Society 185: 1018–1038.
Blanchard, E.E. (1938) Descripciones y anotaciones de Dipteros argentines. Anales de la Sociedad Científica Argentina 126: 345–386.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) Beast 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology 10: e1003537.
Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourmen, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F, Ogilvie, H.A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C-H, Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15: e1006650.
Brncic, D. (1962) New Chilean species of the genus Drosophila. Biologica 33: 3–6.
Brncic, D. (1966) Ecological and cytogenetical studies of Drosophila flavopilosa, a Neotropical species living in Cestrum flowers. Evolution 20: 16–29.
Brncic, D. (1983) Ecology of flower-breeding Drosophila. In: Ashburner, M., Carson, H.L. & Thompson Jr., J.N. (eds), The genetics and biology of Drosophila, vol. 3d. Academic Press, London, England. pp. 333–382.
Calahorra-Oliart, A., Ospina-Garcés, S.M. & León-Paniagua, L. (2021) Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence? Journal of Mammalogy 102: 54–68.
Carnaval, A.C.O.Q. & Moritz, C.M. (2008) Historical climate change predicts current biodiversity patterns in the Brazilian Atlantic rainforest. Journal of Biogeography 35: 1187–1201.
Chassagnard, M.T. & Tsacas, L. (1992) Drosophila (Phloridosa) lutzii Sturtevant (Diptera: Drosophilidae), especie antófila de México. Folia Entomológica Mexicana 85: 95–105.
Cohen, K.M., Finney, S.C., Gibbard, P.L. & Fan, J.X. (2013) The ICS International Chronostratigraphic Chart. Episodes 36: 199–204.
Cordeiro, J., Oliveira, J.H.F., Schmitz, H.J. & Vizentin-Bugoni, J. (2020) High niche partitioning promotes highly specialized, modular, and non-nested florivore-plant networks across spatial scales and reveals drivers of specialization. Oikos 129: 619–629.
Crawford, A.J., Cruz, C., Griffth, E.J., Ross, H., Ibáñez, R., Lips, K.R., Driskell, A.C., Bermingham, E. & Crump, P. (2012) DNA barcoding applied to ex situ tropical amphibian conservation program reveals cryptic diversity in captive populations. Molecular Ecology Resources 13: 1005–18.
De Ré, F.C., Gustani, E.C., Oliveira, A.P.F., Machado L.P.B., Mateus, R.P., Loreto, E.L.S. & Robe, L.J. (2014) Brazilian populations of Drosophila maculifrons (Diptera: Drosophilidae): low diversity levels and signals of a population expansion after the Last Glacial Maximum. Biological Journal of Linnean Society 11: 55–66.
Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006) Relaxed Phylogenetics and Dating with Confidence. PLoS Biology 4: e88.
Drummond, A.J. & Rambaut, A. (2007) Beast: Bayesian evolutionary analysis by sampling trees. Version 1.4.6 BMC Evolutionary Biology 7: 214.
Duda, O. (1927) Die südamerikanischen Drosophiliden (Dipteren) unter Berücksichtigung auch der anderen neotropischen sowie der nearktischen Arten. Archiv für Naturgeschichte 91: 1–228.
Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57.
Elmer, K.R., Kusche, H., Lehtonen, T.K. & Meyer, A. (2010) Local variation and parallel Evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philosophical Transactions of the Royal Society 365: 1763–1782.
Feitl, M., Kern, A.K., Jones, A., Fritz, S.C., Baker, P.A., Joeckel, R.M., Salenbien, W. & Willard, D.A. (2019) Paleoclimate of the subtropical Andes during the latest Miocene, Lauca Basin, Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 534: 109336.
Fernandes, M.O., Barbosa, C., Garcez, D.K., Varela Júnior, A.S., Volcan, M. & Robe, L.J. (2020) Phylogeographic analyses and taxonomic inconsistencies of the Neotropical annual fish Austrolebias minuano, Austrolebias charrua, and Austrolebias pongondo (Cyprinodontiformes: Rivulidae) Environmental Biology of Fishes 104: 1–14.
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–9.
Fonseca, P.M., Loreto, E.L., Gottschalk, M.S. & Robe, L.J. (2017) Cryptic diversity and speciation in the Zygothrica genus group (Diptera, Drosophilidae): the case of Z. vittimaculosa Wiedemann. Insect Systematics & Evolution 48: 285–313.
Franco, F.F., Prado, P.R.R., Sene, F.M., Costa, L.F. & Manfrin, M.H. (2006) Aedeagus morphology as a discriminant marker in two closely related cactophilic species of Drosophila (Diptera: Drosophilidae) in South America. Anais da Academia Brasileira de Ciências 78: 203–212.
Franco, F.F., Soto, I.M., Sene, F.M. & Manfrin, M.H. (2008) Phenotypic variation of the aedeagus of Drosophila serido Vilela & Sene (Diptera: Drosophilidae). Systematics, Morphology and Physiology 37: 558–563.
Franco, F.F. & Manfrin, M.H. (2013) Recent demographic history of cactophilic Drosophila species can be related to Quaternary palaeoclimatic changes in South America. Journal of Biogeography 40: 142–154.
Fu, Y.X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.
Garcez, D.K., Barbosa, C., Loureiro, M., Volcan, M.V., Loebmann, D., Quintela, F.M. & Robe, L.J. (2018) Phylogeography of the critically endangered neotropical annual fish, Austrolebias wolterstorffi (Cyprinodontiformes: Aplocheilidae): genetic and morphometric evidence of a new species complex. Environmental Biology of Fishes 101: 1503–1515.
Goñi, B., Martinez, M.E., Valente, V.L.S. & Vilela, C.R. (1998) Preliminary data on the Drosophila species (Diptera, Drosophilidae) from Uruguay. Revista Brasileira de Entomologia 42: 131–140.
Gotelli, N.J. & Entsminger, G.L. (2001) EcoSim: Null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.html (accessed on 01 Feb 2020).
Gotelli, N.J. & Ellison, A.M. (2013) EcoSimR: Null Models for Ecology. Version 1.0. http://www.uvm.edu/~ngotelli/EcoSim/EcoSim.html (accessed on 01 Feb 2020).
Gotelli, N.J. & Graves, G.R. (1996) Niche overlap. In: Gotelli, N.J. & Graves, G.R. (eds) Null Models in Ecology. Smithsonian Institution Press, Washington, DC: pp. 65–94.
Gustani, E.C., Oliveira, A.P.F., Santos, M.H., Machado, L.P.B. & Mateus, R.P. (2015) Demographic Structure and Evolutionary History of Drosophila ornatifrons (Diptera, Drosophilidae) from the Atlantic Forest of Southern Brazil. Zoological Science 32: 141–150.
Hoorn, C., Wesselingh, F.P., Ter-Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T. & Antonelli, A. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.
Hebert, P.D.N., Cywinska, A., Ball, S.L. & Dewaard, J. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270: 313–321.
Hebert, P.D.N. & Gregory, T.R. (2005) The promise of DNA Barcoding for Taxonomy. Systematic Biology 54: 852–859.
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2017) dismo: Species Distribution Modeling. R Package version 1.3–3. https://CRAN.R-project.org/package=dismo
Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Version 3.2. Bioinformatics 17: 754–755.
Izumitani, H.F., Kusaka, Y., Koshikawa, S., Toda, M.J. & Katoh, T. (2018) Phylogeography of the Subgenus Drosophila (Diptera: Drosophilidae): Evolutionary History of Faunal Divergence between the Old and the New Worlds. PLoS ONE 11: e0160051.
Jörger, K.M., Norenburg, J.L., Wilson, N.G. & Schrödl, M. (2012) Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evolutionary Biology 12: 245
Kekkonen, M. & Hebert, P.D.N. (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14: 706–715.
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.
Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.
Kolmann, M.A., et al. (2021) Phylogenomics of Piranhas and Pacus (Serrasalmidae) Uncovers How Dietary Convergence and Parallelism Obfuscate Traditional Morphological Taxonomy. Systematic Biology 70: 576–592.
Kullikov, A.M., Melnikov, N.G., Gornostaev, N.G., Lazebny, O.E. & Mitrofanov, V.G. (2008) Morphological analysis of male mating organ in the Drosophila virilis species group: a multivariate approach. Journal of Zoological Systematics and Evolutionary Research 42: 135–144.
Leblanc, L., O’Grady, P.M., Rubinoff, D. & Montgomery, S.L. (2009) New immigrant Drosophilidae in Hawaii, and a checklist of the established immigrant species. Proceedings of the Hawaiian Entomological Society 41: 121–127.
Leigh, J.W. & Bryant, D. (2015) PopArt: full-feature software for haplotype network construction. Version 1.7. Methods in Ecology and Evolution 6: 1110–1116.
Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.
Machado, S., Junges dos Santos, J.P., Fonseca, P.M., Bolzan, A.R., David, J., Loreto, E.L.S., Gottaschalk, M.S. & Robe, L.J. (2017) Neotropical mycophagous drosophilids (Diptera: Drosophilidae): DNA barcoding as a way of overcoming the taxonomic impediment. Insect Conservation and Diversity 10: 271–281.
Machado, S., Hartwig Bessa, M., Nornberg, B., Silva Gottschalk, M. & Robe, L.J. (2022) Unveiling the Mycodrosophila projectans (Diptera, Drosophilidae) species complex: Insights into the evolution of three Neotropical cryptic and syntopic species. PLoS ONE 17: e0268657.
Markow, T.A. & O’Grady, P.O. (2008) Reproductive ecology of Drosophila. Functional Ecology 22: 747–759.
Markow, T.A. (2019) Host use and host shifts in Drosophila. Current Opinion in Insect Science 31: 139–145.
Nylander, J.A.A. (2004) MrModeltest v2.3. Program distributed by the author. Uppsala: Uppsala University. https://github.com/nylander/MrModeltest2
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., Wagner, H. (2017) Vegan: community ecology package. R Package Version 2:4–3. https://CRAN.R-project.org/package=vegan.
Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Version 2.1. Molecular Biology and Evolution 25: 1253–1256.
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2011) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.
QGIS Development Team. (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67: 901–904.
Ramos, E.K., Magalhães, R.F., Marques, N.C.S., Baêta, D., Garcia, P.C.A. & Santos, F.R. (2019) Cryptic diversity in Brazilian endemic monkey frogs (Hylidae, Phyllomedusinae, Pithecopus) revealed by multispecies coalescente and integrative approaches. Molecular Phylogenetics and Evolution 132: 105–116.
Richly, E. & Leister, D. (2004) NUMTs in Sequenced Eukaryotic Genomes. Molecular Biology and Evolution 21: 1081–1084.
Robe, L.J., Loreto, E.L.S. & Valente, V.L.S. (2010) Radiation of the Drosophila subgenus (Drosophilidae, Diptera) in the Neotropics. Journal of Zoological Systematics and Evolutionary Research 48: 310–321.
Rohlf, F.J. (2015) The tps series of software. Hystrix 26: 9–12. https://www.sbmorphometrics.org/index.html
R Core Team 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
Rull, V. (2008) Speciation timing and neotropical biodiversity: the Tertiary-Quaternary debate in the light of molecular phylogenetic evidence. Molecular Ecology 17: 2722–2729.
Rull, V. (2011) Neotropical biodiversity: timing and potential drivers. Trends in Ecology & Evolution 26: 508–513.
Sambrook, J. (2001) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. pp: 8.26.
Schmitz, H.J. & Hofmann, P.R.P. (2005) First record of subgenus Phloridosa of Drosophila in Southern Brazil, with notes on breeding sites. Drosophila Information Service 88: 97–101.
Schmitz, H.J. & Valente, V.L.S. (2019) The flower flies and the unknown diversity of Drosophilidae (Diptera): a biodiversity inventory in the Brazilian fauna. Papéis avulsos de Zoologia 59: e20195945.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651–701.
Simó-Riudalbas, M., Metallinou, M., De Pous, P., Els, J., Jayasinghe, S., Péntek-Zakar, E., Wilms, T., Al-Saadi, S. & Carranza, S. (2017) Cryptic diversity in Ptyodactylus (Reptilia: Gekkonidae) from the northern Hajar Mountains of Oman and the United Arab Emirates uncovered by an integrative taxonomic approach. PLoS ONE 12: e0180397.
Staden, R. (1996) The Staden sequence analysis package. Version 2.0. Molecular Biotechnology 5: 233–241.
Struck, T.H., Feder, J.L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V., Kistenich, S., Larsson, K-H., Liow, L.H., Nowak, M.D., Stedje, B., Bachmann, L. & Dimitrov, D. (2018) Finding evolutionary process hidden in cryptic species. Trends in Ecology & Evolution 33: 153–163.
Sturtevant, A.H. (1916) Notes on North American Drosophilidae with descriptions of twenty-three new species. Annals of the Entomological Society of America 9: 323–343.
Sturtevant, A.H. (1921) The North American species of Drosophila. Carnegie Institution of Washington, Washington, 301: 1–151.
Suárez-Villota, E.Y., Carmignotto, A.P., Brandão, M.V., Percequillo, A.R. & Silva, M.J.J. (2018) Systematics of the genus Oecomys (Sigmodontinae: Oryzomyini): molecular phylogenetic, cytogenetic and morphological approaches reveal cryptic species. Zoological Journal of the Linnean Society 184: 182–210.
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
Tamura, K., Glen, S., Peterson, D., Peterson, N., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729.
Trajkovic, J., Pavkovic-Lucic, S. & Savic, T. (2013) Mating success and wing morphometry in Drosophila melanogaster after long-term rearing on different diets. Behaviour 150: 1431–1448.
Vilela, C.R. (1984) Notes on the holotypes of four Neotropical species of the genus Drosophila (Diptera, Drosophilidae) described by A.H. Sturtevant. Revista Brasileira de Entomologia 28: 245–256.
Vilela, C.R. (1986) The type-series of Drosophila denieri Blanchard (Diptera, Drosophilidae). Revista Brasileira de Entomologia 30: 223–226.
Vilela, C.R. & Bächli, G. (1990) Taxonomic studies on Neotropical species of seven genera of Drosophilidae (Diptera). Mitteilungen der schweizerischen Entomologischen Gesellschaft 63: 1–332.
Vilela, C.R. & Bächli, G. (2002a) On the identity of four poorly known species of neotropical Drosophilidae (Diptera). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 75: 197–210.
Vilela, C.R. & Bächli, G. (2002b) Two new North American Drosophila species (Diptera: Drosophilidae). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 75: 211–221.
Vilela, C.R. & Pietro, D. (2018) A new Costa Rican species of Drosophila visiting inflorescences of the hemi-epiphytic climber Monstera lentii (Araceae). Revista Brasileira de Entomologia 62: 225–231.
Warren, D.L., Matzke, N.J., Cardillo, M., Baumgartner, J.B., Beaumont, L.J., Turelli, M., Glor, R.E., Huron, N.A., Simões, M., Iglesias, T.L., Piquet, J.C. & Dinnage, R. (2021) ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44: 504–511. https://github.com/danlwarren/ENMTools.
Yassin, A. (2013) Phylogenetic classification of the Drosophilidae Rondani (Diptera): the role of morphology in the postgenomic era. Systematic Entomology 38: 349–364.
Yassin, A. (2016) Unresolved questions in genitalia coevolution: bridging taxonomy, speciation, and developmental genetics. Organisms Diversity & Evolution 16: 681–688.
Zúñica-Reinoso, Á. & Méndez, M.A. (2018) Hidden and cryptic species reflect parallel and correlated evolution in the phylogeny of the genus Callyntra (Coleoptera: Tenebrionidae) of Central Chile. Molecular Phylogenetics and Evolution 127: 405–415.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 537 | 205 | 14 |
Full Text Views | 287 | 3 | 0 |
PDF Views & Downloads | 459 | 8 | 0 |
Cryptic species represent a substantial fraction of the diversity of Drosophilidae, hampering studies on species ecologies and their evolution. Anthophilous species within the Drosophila lutzii group encompass some of the most widely distributed Neotropical lineages. Nevertheless, their ranges, ecologies, divergence times, and phylogenetic relationships are largely unknown. In this study, we analyzed the cryptic diversity of the lutzii species complex occurring in Southern Brazil and shed light on the ecological and evolutionary processes underlying their current patterns of coexistence. We used an integrative approach, evaluating molecular, ecological, and morphological traits under an evolutionary ecology framework. We documented the unexpected occurrence of D. alei in Southern Brazil, whose range was only known for the Andean region. Our phylogenetic analysis indicated that despite morphological similarities, D. alei is more closely related to D. denieri than to D. lutzii, and that divergence among these three species dates back to the Neogene (7.3 Mya). Niche modeling suggests that D. denieri and D. lutzii populations expanded their ranges and were established in Southern Brazil during the Quaternary (150 kya), being affected by similar paleoclimatic events. On the other hand, D. alei shows distinct abiotic requirements than D. denieri and D. lutzii, and environmental distribution models suggested a significant reduction in its suitable areas during the Quaternary, especially in Southern Brazil. This suggests that the current sympatry observed in this region likely reflects a secondary contact between the three species resulting from niche divergence processes. Altogether, these results advance the understanding of the distribution and phylogenetic relationships of Neotropical anthophilous Drosophila, revealing the interplay between ecological and historical factors in their speciation.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 537 | 205 | 14 |
Full Text Views | 287 | 3 | 0 |
PDF Views & Downloads | 459 | 8 | 0 |