Phylogeny and evolution of the genus Ctenocolum Kingsolver & Whitehead (Coleoptera, Chrysomelidae, Bruchinae), with the description of three new species

in Insect Systematics & Evolution
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The seed beetle genus Ctenocolum Kingsolver & Whitehead is peculiar because its preferred host Lonchocharpus Kunth (Fabaceae) is not preyed upon by other bruchine species. This study investigates the phylogenetic relationships and evolution of this genus and of its species groups, while providing the description of three new species and of the male of C. biolleyi Kingsolver & Whitehead. To infer phylogenetic relationships, a character matrix of 40 morphological characters was assembled and analysed using both parsimony and Bayesian inference. Ancestral state estimations of host plant use and biogeography analyses were also performed. A total of 22 species were examined: 16 Ctenocolum species (including the three new ones) and six outgroup bruchine species (from genera Caryedes Hummel, Meibomeus Bridwell, Pygiopachymerus Pic and Pachymerus Thunberg). All resulting trees support the monophyly of the genus Ctenocolum. Three synapomorphies characterize the genus: (i) head with frontal carina enlarged at base, (ii) male pygidium truncated apically, and (iii) lateral lobes of tegmen with dorsal process. The two known species groups are also recovered monophyletic in the parsimony analyses. The following three species are described: Ctenocolum inmaculatus Manfio & Ribeiro-Costa sp. nov. (Type locality: Venezuela, Guarico), which belongs to the group tuberculatum; Ctenocolum nigronotus Manfio & Ribeiro-Costa sp. nov. (Type locality: Porto Rico, Mayaguez) and C. pallidus Manfio & Ribeiro-Costa sp. nov. (Type locality: Republic of Guyana), which belong to the group podagricus. Finally, we present colored illustrations of dorsal patterns and male genitalia for these three new species and C. biolleyi in addition to an updated key for the genus Ctenocolum.

Insect Systematics & Evolution

An International Journal of Systematic Entomology

Sections

References

Albuquerque F.P. , Manfio D. & Ribeiro-Costa C.S. (2014) A contribution to the knowledge of New World Bruchinae (Coleoptera, Chrysomelidae): taxonomic revision of Ctenocolum Kingsolver & Whitehead, with description of five new species. Zootaxa 3838: 145.

Alvarez N. , Romero-Napoles J. , Anton K.W. , Benrey B. & Hossaert-McKey M. (2006) Phylogenetic relationships in the Neotropical bruchid genus Acanthoscelides (Bruchinae, Bruchidae, Coleoptera). Journal of Zoological Systematics and Evolutionary Research 44: 6374.

Bisby F.A. , Buckingham J. & Harborne J.B. (1994) Phytochemical Dictionary of the Fabaceae. vol. 1. Plants and their Constituents . Chapman and Hall, London: 357 pp.

Borowiec L. (1987) The genera of seed beetles (Coleoptera, Bruchidae). Polskie Pismo Entomologiczne. 57: 3207.

Bremer K. (1994) Branch support and tree stability. Cladistics 10: 295304.

da Silva M.J. (2010) Filogenia e biogeografia de Lonchocarpus s.l. e revisão taxonômica dos gêneros Muellera L.f. e Dahlstedtia Malme (Leguminosae, Papilionoideae, Millettieae). Tese de Doutorado, Campinas, Universidade Estadual de Campinas, Brazil.

da Silva M.J. , de Queiroz L.P. , Tozzi A.M.G.D.A. , Lewis G.P. & de Sousa A.P. (2012) Phylogeny and biogeography of Lonchocarpus sensu lato and its allies in the tribe Millettieae (Leguminosae, Papilionoideae). Taxon 61: 93108.

da Silva M.J. & Tozzi A.M.G.D.A. (2012) Taxonomic revision of Lonchocarpus s. str. (Leguminosae, Papilionoideae) from Brazil. Acta Botanica Brasilica 26: 357377.

Debry R.W. (2001) Improving interpretation of the decay index for DNA sequence data. Systematic Biology 50: 742752.

Delobel A. , Anton K-W , Le Rü B. & Kergoat G.J. (2013) Morphology, biology and phylogeny of African seed beetles belonging to the Bruchidius ituriensis species group (Coleoptera: Chrysomelidae: Bruchinae). Genus - International Journal of Invertebrate Taxonomy 24: 3963.

Erixon P. , Svennblad B. , Britton T. & Oxelman B. (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52: 665673.

Felsenstein J. (1985) Confidence limits on phylogenies with a molecular clock. Systematic Zoology 34: 152161.

Forey P.L. & Kitching I.J. (2000) Experiments in coding multistate characters. In: Scotland R.W. & Pennington T. (Eds.), Homology and Systematics: Coding Characters for Phylogenetic Analysis. Taylor & Francis, London, pp. 5480.

Goloboff P.A. , Farris J.S. & Nixon K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774786.

Goloboff P.A. , Farris J.S. , Källersjö M. , Oxelmann B. , Ramírez M.J. & Szumik C.A. (2003) Improvements to resampling measures of group support. Cladistics 19: 324332.

Haines M.L. , Martin J.-F. , Emberson R.M. , Syrett P. , Withers T.M. & Worner S.P. (2007) Can sibling species explain the broadening of the host range of the broom seed beetle, Bruchidius villosus (F.) (Coleoptera: Chrysomelidae) in New Zealand? New Zealand Entomologist 30: 511.

Hetz M. & Johnson C.D. (1988) Hymenopterous parasites of some bruchid beetles of North and Central America. Journal of Stored Products. Research. 24:131143.

Hillis D.M. & Bull J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182192.

ICZN (1999) International Code of Zoological Nomenclature, fourth edition [online version]. The International Trust for Zoological Nomenclature, London, xxix + 1306. Available from: http://www.nhm.ac.uk/hosted-sites/iczn/code/ (accessed 11 May 2016).

Janzen D.H. (1975). Interactions of seeds and their insect predators/parasitoids in a tropical deciduous forest. In Evolutionary strategies of parasitic insects and mites (pp. 154186). Springer US.

Janzen D.H. (1977) The interaction of seed predators and seed chemistry. In: Labeyrie V. (Ed.), Comportement des Insectes et Milieu Trophique. Vol. 265. Colloques Internationaux du Centre National de la Recherche Scientifique, Paris, pp. 415428.

Janzen D.H. (1978) The ecology and evolutionary biology of seed chemistry as relates to seed predation. In: Harborne J.B. (Ed.), Biochemical Aspects of Plant and Animal Coevolution. Elsevier Academic Press, London, pp. 163206.

Janzen D.H. (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. Journal of Ecology. : 929952.

Kass R.E. & Raftery A.E. (1995) Bayes factors. Journal of the American Statistical Association 90: 773795.

Kato T. , Bonet A. , Yoshitake H. , Romero-Nápoles J. , Jinbo U. , Ito M. & Shimada M. (2010) Evolution of host utilization patterns in the seed beetle genus Mimosestes Bridwell (Coleoptera: Chrysomelidae: Bruchinae). Molecular Phylogenetics and Evolution 55: 816832.

Kergoat G.J. , Alvarez N. , Hossaert-McKey M. , Faure N. & Silvain J.-F. (2005a) Parallels in the evolution of the two largest New and Old World seed-beetle genera (Coleoptera, Bruchidae). Molecular Ecology 14: 40034021.

Kergoat G.J. , Delobel A. , Fédière G. , Le B. & Silvain J.-F. (2005b) Both host-plant phylogeny and chemistry have shaped the African seed-beetle radiation. Molecular Phylogenetics and Evolution 35: 602611.

Kergoat G.J. , Delobel A. , Le Ru B. & Silvain J.-F. (2008) Seed beetles in the age of the molecule: recent advances on systematics and host-plant association patterns. In: Jolivet P. , Santiago-Blay J. & M. Schmitt (Eds.), Researches on Chrysomelidae Volume 1. Brill, Leiden, the Netherlands, pp. 5986.

Kergoat G.J. , Delobel A. & Silvain J.-F. (2004) Phylogeny and host-specificity of European seed beetles (Coleoptera, Bruchidae), new insights from molecular and ecological data. Molecular Phylogenetics and Evolution 32: 855865.

Kergoat G.J. , Le Ru B.P. , Genson G. , Cruaud C. , Couloux A. & Delobel A. (2011) Phylogenetics, species boundaries and timing of resource tracking in a highly specialized group of seed beetles (Coleoptera: Chrysomelidae: Bruchinae). Molecular Phylogenetics and Evolution 59: 746760.

Kergoat G.J. , Le Ru B. , Sadeghi S.E. , Tuda M. , Reid C.A. , György Z. , Genson G. , C.S. Ribeiro-Costa & Delobel A. (2015) Evolution of Spermophagus seed beetles (Coleoptera, Bruchinae, Amblycerini) indicates both synchronous and delayed colonizations of host plants. Molecular Phylogenetics and Evolution 89: 91103.

Kergoat G.J. & Silvain J.-F. (2004) Le genre Bruchidius (Coleoptera: Bruchidae) est-il monophylétique? Apports des méthodes de parcimonie, maximum de vraisemblance et inférence bayésienne. In: Bourgoin T. & Silvain J.-F. (Eds.), Avenir et pertinence des méthodes d’analyses en phylogénie moléculaire. Volume 22 de Biosystema. Société française de Systématique, Paris, pp. 113125.

Kergoat G.J. , J.-F. Silvain , Buranapanichpan S. & Tuda M. (2007a) When insects help to resolve plant phylogeny: evidence for a paraphyletic genus Acacia from the systematics and host-plant. Zoologica Scripta 36: 143152.

Kergoat G.J. , Silvain J.-F. , Delobel A. , Tuda M. & Anton K.-W. (2007b) Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). Molecular Phylogenetics and Evolution 43: 251269.

Kingsolver J.M. (1970) Study of male genitalia in Bruchidae (Coleoptera). Proceedings of the Entomological Society of Washington 72: 370386.

Kingsolver J.M. & Whitehead D.R. (1974a) Biosystematics of Central American species of Ctenocolum, a new genus of seed beetles (Coleoptera: Bruchidae). Proceedings of the Biological Society of Washington 87: 283312.

Kingsolver J.M. & Whitehead D.R. (1974b) Classification and comparative biology of the seed beetle genus Caryedes Hummel (Coleoptera: Bruchidae). Transactions of the American Entomological Society 100: 341436.

Kingsolver J.M. (1990) New World Bruchidae past, present, future. In: Fujii K. , Gatehouse A.M.R. , Johnson C.D. , Mitchel R. & Yoshida T. (Eds.), Bruchids and Legumes: Economics, Ecology and Coevolution. Springer, Netherlands, pp. 121129.

Lawrence J.F. , Beutel R.G. , Leschen R.A.B. & Ślipiński A. (2010) Glossary of morphological terms. In: Leschen R.A.B. , Beutel R.G. & Lawrence J.F. (Eds.), Handbook of Zoology. Vol. 2. Morphology and Systematics (Elateroidea, Bostrichformia, Cucujiformia partim). Walter de Gruyter, Berlin, pp. 920.

Lewis P.O. (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50: 913925.

Luca Y. de (1972) Catalogue raisonné des insectes des Antilles francaises. Coleoptera: Bruchidae. Annales de zoologie: Ecologie animale 4: 103107.

Maddison W.P. & Maddison D.R. (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2 http://mesquiteproject.org.

Manfio D. , Ribeiro-Costa C.S. & Caron E. (2013) Phylogeny and revision of the New World seed-feeding bruchine genus Gibbobruchus Pic (Coleoptera: Chrysomelidae). Invertebrate Systematics 27: 137.

Manfio D. & Ribeiro-Costa C.S. (2016) A key to American genus Merobruchus Bridwell (Coleoptera: Chrysomelidae: Bruchinae) with descriptions of species and two new host plant records for the subfamily. Zootaxa 4078: 284319.

Manfio D. , Jorge I.R. , Morse G.E. & Ribeiro-Costa C.S. (2016) The New World Gibbobruchus Pic (Coleoptera, Chrysomelidae, Bruchinae): description of a new species and phylogenetic insights into the evolution of host associations and biogeography. Zootaxa 4103: 513525.

Morrone J.J. (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782: 1110.

Morse G. (2014) Bruchinae Latreille, 1802. In: Leschen Richard A.B. & Beutel R.G. (Eds.), Handbook of Zoology. Volume 3: Morphology and systematics (Chrysomeloidea, Curculionoidea). De Gruyter, Berlin, pp. 189196.

Morse G.E. & Farrell B.D. (2005a) Ecological and evolutionary diversification of the seed beetle genus Stator (Coleoptera: Chrysomelidae: Bruchinae). Evolution 59: 13151333.

Morse G.E. & Farrell B.D. (2005b) Interspecific phylogeography of the Stator limbatus species complex: the geographic context of speciation and specialization. Molecular Phylogenetics and Evolution 36: 201213.

Nápoles J.R. , Ayers T.J. & Johnson C.D. (2002) Cladistics, Bruchids and host plants: evolutionary interactions in Amblycerus (Coleoptera: Bruchidae). Acta Zoológica Mexicana 86: 116.

Nixon K.C. (1999–2002) Winclada, Version 1.00.08. Published by the author, Ithaca, New York, NY. Available from: http://www.cladistics.com/ (Accessed May 2016).

Ratcliffe B.C. (2013) Best writing and curatorial practices for describing a new species of beetle: a primer. The Coleopterists Bulletin 67: 107113.

N.J. Romero (2016). Escarabajos (Coleoptera: Bruchidae) asociados a semillas del género Piscidia L., 1759 (Leguminosae). Acta Zoológica Mexicana (n.s.) 32: 286295.

N.J. Romero & R.L. Westcott (2011) The Bruchidae (Insecta: Coleoptera) of La Reserva de la Biósfera Sierra de Huautla, Morelos, Mexico, with descriptions of two new species and an annotated checklist. Insecta Mundi 166: 115.

Ronquist F. , Teslenko M. , van der Mark P. , Ayres D.L. , Darling A. , Höhna S. , Larget B. , Liu L. , Suchard M.A. & Huelsenbeck J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.

Sari L.T. , Ribeiro-Costa C.S. & Medeiros A.C.S. (2002) Insects associated with seeds of Lonchocarpus muehlbergianus Hassl. (Fabaceae) in Três Barras, Paraná, Brazil. Neotropical Entomology 31: 483486.

Silva J.A.P. & Ribeiro-Costa C.S. (2008) Morfologia comparada dos gêneros do grupo Merobruchus (Coleoptera: Chrysomelidae: Bruchinae): diagnoses e chave. Revista Brasileira de Zoologia 25: 802826.

Silvain J.-F. & Delobel A. (1998) Phylogeny of West African Caryedon (Coleoptera: Bruchidae): congruence between molecular and morphological data. Molecular Phylogenetics and Evolution 9: 533541.

Slove J. & Janz N. (2011) The Relationship between diet breadth and geographic range size in the butterfly subfamily Nymphalinae – a study of global scale. PLoS One 6: .

Tuda M. , Rönn J. , Buranapanichpan S. , Wasano N. & Arnqvist G. (2006) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status. Molecular Ecology 15: 35413551.

Whitehead D.R. & Kingsolver J.M. (1975) Biosystematics of the North and Central American species of Gibbobruchus (Coleoptera: Bruchidae: Bruchinae). Transactions of the American Entomological Society 101: 167225.

Wink M. (2013) Evolution of secondary metabolites in legumes (Fabaceae). South African Journal of Botany 89: 164175.

Wunderlin R.P. 2010. New combinations in Schnella (Fabaceae: Caesalpinioideae: Cercideae). Phytoneuron 49: 15.

Zacher F. (1952) Die Nährpflanzen der Samenkäfer. Zeitschrift für angewandte Entomologie 33: 460480.

Figures

  • A Strict consensus of the three most parsimonious trees based on a parsimony analysis of the morphological dataset (78 steps, CI = 0.53, RI = 0.80). Filled circles represent unique changes, open circles represent multiple changes. Values for the Bremer (BS) and symmetric resampling (BV) support are below branches. B–D. Three different equiparsimonious hypotheses.

    View in gallery
  • Bayesian inference consensus topology based on the analysis of the morphological dataset. Branch support is figured on nodes using PP.

    View in gallery
  • Ctenocolum inmaculatus sp. nov.: 13. Dorsal habitus; 14. Lateral habitus; 15. Head, frontal view; 16. Male pygidium; 17–20. Male genitalia: 17. Median lobe; 18. Tegmen; 19–20. Submedian smooth sclerite: 19. Ventral view; 20. Lateral view. Scales: 13–14. 0.5 mm; 15–16. 0.2 mm; 17–18. 0.25 mm; 19–20. 0.1 mm.

    View in gallery
  • Ctenocolum biolleyi: 21. Dorsal habitus; 22. Lateral habitus; 23. Head, frontal view; 24. Male pygidium; 25–27. Male genitalia: 25. Median lobe; 26–27. Tegmen: 26. Ventral view; 27. Lateral view. Scales: 21–22. 1 mm; 23–24. 0.5 mm; 25–27. 0.25 mm.

    View in gallery
  • Ctenocolum pallidus sp. nov.: 35. Dorsal habitus; 36. Lateral habitus; 37. Head, frontal view; 38–39. Pygidium: 38. Male; 39. Female; 40–41. Male genitalia: 40. Median lobe; 41. Tegmen. Scales: 35–36. 1 mm; 37–39. 0.5 mm; 40–41. 0,25 mm.

    View in gallery
  • Dorsal habitus, Ctenocolum acapulcensis; 5. Head, frontal view, Caryedes quadridens; 6–7. Pronotum, lateral view: 6. Ctenocolum podagricus; 7. C. acapulcensis; 8. Lateral view, C. quadridens; 9. Posterior leg, external view, C. janzeni; 10–12. Male genitalia: 10–11. C. quadridens: 10. Median lobe; 11. Tegmen; 12. Median lobe, Pygiopachymerus lineola. Scales. 3, 7–8: 1mm; 5–6, 9: 0.5mm; 10–12: 0.25.

    View in gallery
  • Ctenocolum nigronotus sp. nov.: 28. Dorsal habitus; 29. Lateral habitus; 30. Head, frontal view; 31. Male pygidium; 32–34. Male genitalia: 32. Median lobe; 33. Median lobe, apical half; 34. Tegmen. Scales: 28–30. 0.5 mm; 31. 0.2 mm; 32–34. 0.25 mm.

    View in gallery
  • Ancestral state estimation and biogeographic analyses using as a guide tree the strict consensus tree from the parsimony analysis of the morphological dataset. On the evolution of host plant use is presented while reconstruction of ancestral geographic areas is figured on the right. Detailed legends for both character optimizations are shown on the top of the figure.

    View in gallery
  • Sternite VIII: 42. Ctenocolum biolleyi; 43. C. pallidus sp. nov. Scales: 42. 1 mm; 43. 0.5 mm.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 17 17 9
Full Text Views 9 9 9
PDF Downloads 1 1 1
EPUB Downloads 0 0 0