Black soldier fly (Hermetia illucens) (BSF) is an insect that can be fed with food waste, and its larval meal is now studied as a feed ingredient to reduce the use of fish meal. However, adding BSF into the feed of pearl gentian grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus ) did not give good results. Higher levels of BSF substitution caused disorders of fatty acid metabolism, leads to fatty liver, and caused oxidative damage in the liver. Also, higher levels of BSF substitution reduced percentage of thick myofibers and significantly affected 40 of metabolites, including dodecanoic acid, D-lyxose, D-aspartic acid, and glutathione in the muscle, which did no positive effect on the improvement of fish meat. Therefore, BSF may require further processing, such as degreasing, in order to be better used.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Barragan-Fonseca, K.B., Dicke, M. and Van Loon, J., 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review. Journal of Insects as Food and Feed 3: 105-120. https://doi.org/10.3920/JIFF2016.0055
Belghit, I., Liland, N.S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å. and Lock, E.-J., 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503: 609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032
Bruni, L., Belghit, I., Lock, E.J., Secci, G., Taiti, C. and Parisi, G., 2020a. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). Journal of the Science of Food and Agriculture 100: 1038-1047. https://doi.org/10.1002/jsfa.10108
Bruni, L., Randazzo, B., Cardinaletti, G., Zarantoniello, M., Mina, F., Secci, G., Tulli, F., Olivotto, I. and Parisi, G., 2020b. Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): lipid metabolism and fillet quality investigations. Aquaculture 529: 735678. https://doi.org/10.1016/j.aquaculture.2020.735678
Cai, W., Jiang, G., Li, X., Sun, C., Mi, H., Liu, S. and Liu, W., 2018. Effects of complete fish meal replacement by rice protein concentrate with or without lysine supplement on growth performance, muscle development and flesh quality of blunt snout bream (Megalobrama amblycephala). Aquaculture Nutrition 24: 481-491. https://doi.org/10.1111/anu.12581
Chen, J., Dai, L., Lei, Y. and Hu, H., 2021. Expression, antibody preparation of NCCRP-1 and IL-10 of grass carp, and histopathological changes. Journal of Guangdong Ocean University 41: 10-18. https://doi.org/10.3969/j.issn.1673-9159.2021.05.002
Chen, Q., Liu, H., Tan, B., Dong, X., Chi, S., Yang, Q. and Zhang, S., 2016. Effects of dietary cholesterol level on growth performance, blood biochemical parameters and lipid metabolism of juvenile cobia (Rachycentron canadum). Journal of Guangdong Ocean University 36: 35-43. https://doi.org/10.3969/j.issn.1673-9159.2016.01.007
Chen, Y., Chi, S., Zhang, S., Dong, X., Yang, Q., Liu, H., Tan, B. and Xie, S., 2022. Effect of black soldier fly (Hermetia illucens) larvae meal on lipid and glucose metabolism of Pacific white shrimp Litopenaeus vannamei. British Journal of Nutrition 128: 1674-1688. https://doi.org/10.1017/S0007114521004670
Espe, M., Lemme, A., Petri, A. and El-Mowafi, A., 2006. Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture 255: 255-262. https://doi.org/10.1016/j.aquaculture.2005.12.030
Ewald, N., Vidakovic, A., Langeland, M., Kiessling, A., Sampels, S. and Lalander, C., 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – possibilities and limitations for modification through diet. Waste Management 102: 40-47. https://doi.org/10.1016/j.wasman.2019.10.014
Fan, X., Qin, X., Zhang, C., Chen, J. and Zhu, Q., 2018. Nutritional and volatile flavor components of dorsal and ventral muscle from hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus ). Journal of Guangdong Ocean University 38: 39-46. https://doi.org/10.3969/j.issn.1673-9159.2018.01.006
Figueiredo-Silva, A.C., Kaushik, S., Terrier, F., Schrama, J.W., Médale, F. and Geurden, I., 2012. Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG. British Journal of Nutrition 107: 1714-1725. https://doi.org/10.1017/S0007114511004739
Gelse, K., Pöschl, E. and Aigner, T., 2003. Collagens – structure, function, and biosynthesis. Advanced drug delivery reviews 55: 1531-1546. https://doi.org/10.1016/j.addr.2003.08.002
Hakimi, A.A., Reznik, E., Lee, C.-H., Creighton, C.J., Brannon, A.R., Luna, A., Aksoy, B.A., Liu, E.M., Shen, R. and Lee, W., 2016. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29: 104-116. https://doi.org/10.1016/j.ccell.2015.12.004
Huang, B., Zhang, S., Dong, X., Chi, S., Yang, Q., Liu, H., Tan, B. and Xie, S., 2022. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus ). Fish & Shellfish Immunology 120: 497-506. https://doi.org/10.1016/j.fsi.2021.12.027
Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Picard, B. and Bugeon, J., 2016. How muscle structure and composition influence meat and flesh quality. The Scientific World Journal 2016. https://doi.org/10.1155/2016/3182746
Liu, Y., Wang, J., Li, B., Qiao, H., Liu, X., Hao, T. and Wang, X., 2018. Dietary manganese requirement of juvenile hybrid grouper, Epinephelus lanceolatus × E. fuscoguttatus. Aquaculture Nutrition 24: 215-223. https://doi.org/10.1111/anu.12549
Long, S., Dong, X., Liu, H., Yan, X., Tan, B., Zhang, S., Chi, S., Yang, Q., Liu, H. and Yang, Y., 2022. Effect of dietary oxidized fish oil on liver function in hybrid grouper ( Epinephelus fuscoguttatus × Epinephelus lanceolatus). Aquaculture Reports 22: 101000. https://doi.org/10.1016/j.aqrep.2021.101000
Mohamad-Zulkifli, N.F.N., Annita, S.K.Y., Gunzo, K., Leong-Seng, L., Shigeharu, S., Emilie, D., Saleem, M. and Rossita, S., 2019. Apparent digestibility coefficient of black soldier fly (Hermetia illucens) larvae in formulated diets for hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus ). Aquaculture, Aquarium, Conservation Legislation 12: 513-522.
Moller, D. and Berger, J., 2003. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. International Journal of Obesity 27: S17-S21. https://doi.org/10.1038/sj.ijo.0802494
Nyakeri, E., Ogola, H., Ayieko, M. and Amimo, F., 2017. An open system for farming black soldier fly larvae as a source of proteins for smallscale poultry and fish production. Journal of Insects as Food and Feed. 3(1): 51-56. https://doi.org/10.3920/JIFF2016.0030
Randazzo, B., Zarantoniello, M., Gioacchini, G., Giorgini, E., Truzzi, C., Notarstefano, V., Cardinaletti, G., Huyen, K.T., Carnevali, O. and Olivotto, I., 2020. Can insect-based diets affect zebrafish (Danio rerio) reproduction? A multidisciplinary study. Zebrafish 17: 287-304. https://doi.org/10.1089/zeb.2020.1891
Roques, S., Deborde, C., Richard, N., Skiba-Cassy, S., Moing, A. and Fauconneau, B., 2020. Metabolomics and fish nutrition: a review in the context of sustainable feed development. Reviews in Aquaculture 12: 261-282. https://doi.org/10.1111/raq.12316
Saxena, R., 2011. Microscopic anatomy, basic terms, and elemental lesions, Practical hepatic pathology: a diagnostic approach. Elsevier, pp. 20-26.
Stål, P., 2015. Liver fibrosis in non-alcoholic fatty liver disease-diagnostic challenge with prognostic significance. World Journal of Gastroenterology 21: 11077. https://doi.org/10.3748/wjg.v21.i39.11077
Sundekilde, U.K., Rasmussen, M.K., Young, J.F. and Bertram, H.C., 2017. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine. Food Chemistry 217: 151-154. https://doi.org/10.1016/j.foodchem.2016.08.104
Valente, L.M., Cabral, E.M., Sousa, V., Cunha, L.M. and Fernandes, J.M., 2016. Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes. Aquaculture 453: 77-85. https://doi.org/10.1016/j.aquaculture.2015.11.034
Villarroya, F., Iglesias, R. and Giralt, M., 2007. PPARs in the control of uncoupling proteins gene expression. PPAR Research 2007: 1-12. https://doi.org/10.1155/2007/74364
Wang, X., Gao, X., Wang, X., Fang, Y., Xu, L., Zhao, K., Huang, B. and Liu, B., 2022. Bioaccumulation of manganese and its effects on oxidative stress and immune response in juvenile groupers (Epinephelus moara × E. lanceolatus ). Chemosphere 297: 134235. https://doi.org/10.1016/j.chemosphere.2022.134235
Wu, Y., Li, R., Shen, G., Huang, F., Yang, Q., Tan, B. and Chi, S., 2021. Effects of dietary small peptides on growth, antioxidant capacity, nonspecific immunity and in gut microflora structure of Litopenaeus vannamei. Journal of Guangdong Ocean University 41: 1-9. https://doi.org/10.3969/j.issn.1673-9159.2021.05.001
Xie, Y., Peng, K., Hu, J. and Wang, G.X., 2022. Review on application of black soldier fly (Hermetia illucens Linnaeus) in aquatic feed. Journal of Guangdong Ocean University 42: 144-150. https://doi.org/10.3969/j.issn.1673-9159.2022.01.019
Xu, J., Li, X., Yao, X., Xie, S., Chi, S., Zhang, S., Cao, J. and Tan, B., 2022. Protective effects of bile acids against hepatic lipid accumulation in hybrid grouper fed a high-lipid diet. Frontiers in Nutrition 9. https://doi.org/10.3389/fnut.2022.813249
Yao, W., Yang, P., Zhang, X., Xu, X., Zhang, C., Li, X. and Leng, X., 2022. Effects of replacing dietary fish meal with Clostridium autoethanogenum protein on growth and flesh quality of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 549: 737770. https://doi.org/10.1016/j.aquaculture.2021.737770
Ye, B., Li, J., Xu, L., Liu, H. and Yang, M., 2022. Metabolomic effects of the dietary inclusion of Hermetia illucens larva meal in tilapia. Metabolites 12: 286. https://doi.org/10.3390/metabo12040286
Yoshida, S., Akama, M. and Kikuchi, J., 2014. Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan. Scientific Reports 4: 1-9. https://doi.org/10.1038/srep07005
Zarate, D., Lovell, R. and Payne, M., 1999. Effects of feeding frequency and rate of stomach evacuation on utilization of dietary free and protein-bound lysine for growth by channel catfish Lctalurus punctatus. Aquaculture Nutrition 5: 17-22. https://doi.org/10.1046/j.1365-2095.1999.00083.x
Zhang, W., Tan, B., Pang, A., Deng, J., Yang, Q. and Zhang, H., 2022. Screening of potential biomarkers for soybean meal induced enteritis in pearl gentian grouper, Epinephelus fuscoguttatus × Epinephelus lanceolatus . Journal of Guangdong Ocean University 42: 1-12.
Zhao, H., Xia, J., Zhang, X., He, X., Li, L., Tang, R., Chi, W. and Li, D., 2018. Diet affects muscle quality and growth traits of grass carp (Ctenopharyngodon idellus): a comparison between grass and artificial feed. Frontiers in Physiology 9: 283. https://doi.org/10.3389/fphys.2018.00283
Zheng, G., Sun, C., Pu, J., Chen, J., Jiang, X. and Zou, S., 2015. Two myostatin genes exhibit divergent and conserved functions in grass carp (Ctenopharyngodon idellus). General Comparative Endocrinology 214: 68-76. https://doi.org/10.1016/j.ygcen.2015.03.008
Zhou, H., Chen, G., Ji, D., Wang, S. and Zhang, J., 2012. The effects of partial replacement of fish meal by three protein sources on growth performance approximate compositions and energy budget of juvenile brown-marbled grouper (Epinephelus fuscoguttatus). Journal of Guangdong Ocean University 32: 10-16.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 536 | 272 | 39 |
Full Text Views | 51 | 2 | 0 |
PDF Views & Downloads | 103 | 6 | 0 |
Black soldier fly (Hermetia illucens) (BSF) is an insect that can be fed with food waste, and its larval meal is now studied as a feed ingredient to reduce the use of fish meal. However, adding BSF into the feed of pearl gentian grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus ) did not give good results. Higher levels of BSF substitution caused disorders of fatty acid metabolism, leads to fatty liver, and caused oxidative damage in the liver. Also, higher levels of BSF substitution reduced percentage of thick myofibers and significantly affected 40 of metabolites, including dodecanoic acid, D-lyxose, D-aspartic acid, and glutathione in the muscle, which did no positive effect on the improvement of fish meat. Therefore, BSF may require further processing, such as degreasing, in order to be better used.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 536 | 272 | 39 |
Full Text Views | 51 | 2 | 0 |
PDF Views & Downloads | 103 | 6 | 0 |