‘Hidden hunger’ occurs in humans and livestock and stems from deficiencies in microelements, essential amino acids, and vitamins. Triggered by insufficient intake of micronutrients in food and feed, even when macronutrients are abundant, hidden hunger can result in the development of serious diseases and pathological conditions. Finding sufficient micronutrients is often challenging because they are either obtained from limited external natural sources or synthesised de novo. Soil-dwelling saprophages comprise one of the largest proportions of zoomasses on Earth but remain surprisingly overlooked as a potential micronutrient source. To assess their nutritional content concerning micronutrients, we selected 31 invertebrate species obtained from natural ecosystems of European Russia or widely cultivated species originating mainly from tropical regions. They belong to major soil saprophage taxa: cockroaches (Blattodea), beetle (Coleoptera) larvae and imagoes, springtails (Collembola), millipedes (Diplopoda), fly (Diptera) larvae, earthworms (Haplotaxida), woodlice (Isopoda), crickets (Orthoptera). We assessed their proteinogenic amino acid, microelement, and vitamin composition. Taxonomic differences in the composition and ratio of micronutrients were determined and we identified specific taxa naturally enriched with micronutrients for future consideration as potential candidates for incorporation into food and feed supplements to alleviate hidden hunger in livestock and humans.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ardestani, M.M., van Straalen, N.M. and van Gestel, C.A.M., 2014. Uptake and elimination kinetics of metals in soil invertebrates: a review. Environmental Pollution 193: 277-295. https://doi.org/10.1016/j.envpol.2014.06.026
Bar-On, Y.M., Phillips, R. and Milo, R., 2018. The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America 115: 6506-6511. https://doi.org/10.1073/pnas.1711842115
Barabási, A., Menichetti, G. and Loscalzo, J., 2020. The unmapped chemical complexity of our diet. Nature Food 1: 33-37. https://doi.org/10.1038/s43016-019-0005-1
Bednářová, M., Borkovcová, M., Mlček, J., Rop, O. and Zeman, L., 2013. Edible insect species suitable for entomophagy under condition of Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61: 587-593. https://doi.org/10.11118/actaun201361030587
Burchi, F., Fanzo, J. and Frison, E., 2011. The role of food and nutrition system approaches in tackling hidden hunger. International Journal of Environmental Research and Public Health 8(2): 358-373. https://doi.org/10.3390/ijerph8020358
Churchward-Venne, T.A., Pinckaers, P.J.M., van Loon, J.J.A. and van Loon, L.J.C., 2017. Consideration of insects as a source of dietary protein for human consumption. Nutrition Reviews 75: 1035-1045. https://doi.org/10.1093/nutrit/nux057
Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C. and Maynard, D.S., 2019. The global soil community and its influence on biogeochemistry. Science 365: eaav0550. https://doi.org/10.1126/science.aav0550
Denton-Thompson, S.M. and Sayer, E.J., 2022. Micronutrients in food production: what can we learn from natural ecosystems?. Soil Systems 6(1): 8. https://doi.org/10.3390/soilsystems6010008
Eisner, T. and Meinwald, J., 1966. Defensive secretions of arthropods. Science 153: 1341-1350. https://doi.org/10.1126/science.153.3742.1341
Evans, J., Alemu, M.H., Flore, R., Frøst, M.B., Halloran, A., Jensen, A.B., Maciel-Vergara, G., Meyer-Rochow, V.B., Münke-Svendsen, C., Olsen, S.B., Payne, C., Roos, N., Rozin, P., Tan, H.S.G., van Huis, A., Vantomme, P. and Eilenberg, J., 2015. ‘entomophagy’: an evolving terminology in need of review. Journal of Insects as Food and Feed 1: 293-305. https://doi.org/10.3920/JIFF2015.0074
Evans, R.D. and Heather, L.C., 2019. Human metabolism: pathways and clinical aspects. Surgery 37: 302-309. https://doi.org/10.1016/j.mpsur.2019.03.006
Ezzati, M., Lopez, A.D., Rodgers, A. and Murray, C.J., 2004. Comparative quantification of health risks: the global and regional burden of disease attributable to selected major risk factors. World Health Organization, Geneva.
FAO, ITPS, GSBI, SCBD and EC, 2020. State of knowledge of soil biodiversity – status, challenges and potentialities. FAO, Rome, Italy.
Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A. and Cleveland, C.C., 2009. Global patterns in belowground communities. Ecology Letters 12: 1238-1249. https://doi.org/10.1111/j.1461-0248.2009.01360.x
Finke, M.D., 2002. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology 21: 269-285. https://doi.org/10.1002/zoo.10031
Fisher, G.E.J., 2008. Micronutrients and animal nutrition and the link between the application of micronutrients to crops and animal health. Turkish Journal of Agriculture and Forestry 32: 221-233.
Gödecke, T., Stein, A.J. and Qaim, M., 2018. The global burden of chronic and hidden hunger: trends and determinants. Global Food Security 17: 21-29. https://doi.org/10.1016/j.gfs.2018.03.004
Gongalsky, K.B., 2021. Soil macrofauna: study problems and perspectives. Soil Biology and Biochemistry 159: 108281. https://doi.org/10.1016/j.soilbio.2021.108281
Gupta, U., Wu, K. and Liang, S., 2008. Micronutrients in soils, crops, and livestock. Frontiers in Earth Science 15: 110-125. https://doi.org/10.1016/S1872-5791(09)60003-8
Hsu, G.C., Szlavecz, K., Csuzdi, C., Bernard, M. and Chang, C.H., 2023. Ecological groups and isotopic niches of earthworms. Applied Soil Ecology 181: 104655. https://doi.org/10.1016/j.apsoil.2022.104655
ISO 21470, 2020. Infant formula and adult nutritionals – Simultaneous determination of total vitamins B1, B2, B3 and B6 – Enzymatic digestion and LC-MS/MS.
Janssen, M.P. and Hogervorst, R., 1993. Metal accumulation in soil arthropods in relation to micro-nutrients. Environmental Pollution 79: 181-189. https://doi.org/10.1016/0269-7491(93)90068-y
Kokot, Z.J. and Matysiak, J., 2008. Inductively coupled plasma mass spectrometry determination of metals in honeybee venom. Journal of Pharmaceutical and Biomedical Analysis 48: 955-959. https://doi.org/10.1016/j.jpba.2008.05.033
Lal, R., 2009. Soil degradation as a reason for inadequate human nutrition. Food Security 1: 45-57. https://doi.org/10.1007/s12571-009-0009-z
López-Cervantes, J., Sánchez-Machado, D.I. and Rı́os-Vázquez, N.J., 2006. High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. Journal of Chromatography A 1105: 135-139. https://doi.org/10.1016/j.chroma.2005.08.010
Lowe, N., 2021. The global challenge of hidden hunger: perspectives from the field. Proceedings of the Nutrition Society 80(3): 283-289. https://doi.org/10.1017/S0029665121000902
Lupien, J.R., 1996. The FAO/UNU food composition initiative. Food Chemistry 57: 171-173. https://doi.org/10.1016/0308-8146(96)00154-9
McDowell, L.R., 2006. Vitamin nutrition of livestock animals: overview from vitamin discovery to today. Canadian Journal of Animal Science 86: 171-179. https://doi.org/10.4141/A05-057
Miller, D.D. and Welch, R.M., 2013. Food system strategies for preventing micronutrient malnutrition. Food Policy 42: 115-128. https://doi.org/10.1016/j.foodpol.2013.06.008
Moore, S., Spackman, D.H. and Stein, W.H., 1958. Automatic recording apparatus for use in the chromatography of amino acids. Federation Proceedings 17: 1107-1115.
Muthayya, S., Rah, J.H., Sugimoto, J.D., Roos, F.F., Kraemer, K. and Black, R.E., 2013. The global hidden hunger indices and maps: an advocacy tool for action. PLoS ONE 8(6): e67860. https://doi.org/10.1371/journal.pone.0067860
Phillips, H.R., Guerra, C.A., Bartz, M.L., Briones, M.J., Brown, G., Crowther, T.W., Ferlian, O., Gongalsky, K.B., Van Den Hoogen, J., Krebs, J., Orgiazzi, A., Routh, D., Schwarz, B., Bach, E.M., Bennett, J., Brose, U., Decaëns, T., König-Ries, B., Loreau, M., Mathieu, J., Mulder, C., Van Der Putten, W.H., Ramirez, K.S., Rillig, M.C., Russell, D., Rutgers, M., Thakur, M.P., De Vries, F.T., Wall, D.H., Wardle, D.A., Arai, M., Ayuke, F.O., Baker, G.H., Beauséjour, R., Bedano, J.C., Birkhofer, K., Blanchart, E., Blossey, B., Bolger, T., Bradley, R.L., Callaham, M.A., Capowiez, Y., Caulfield, M.E., Choi, A., Crotty, F.V., Dávalos, A., Cosin, D.J.D., Dominguez, A., Duhour, A.E., Van Eekeren, N., Emmerling, C., Falco, L.B., Fernández, R., Fonte, S.J., Fragoso, C., Franco, A.L.C., Fugère, M., Fusilero, A.T., Gholami, S., Gundale, M.J., Hackenberger, D.K., Hernández, L.M., Hishi, T., Holdsworth, A.R., Holmstrup, M., Hopfensperger, K.N., Lwanga, E.H., Huhta, V., Hurisso, T.T., Iannone, B.V., Iordache, M., Joschko, M., Kaneko, N., Kanianska, R., Keith, A.M., Kelly, C.A., Kernecker, M.L., Klaminder, J., Koné, A.W., Kooch, Y., Kukkonen, S.T., Lalthanzara, H., Lammel, D.R., Lebedev, I.M., Li, Y., Lidon, J.B.J., Lincoln, N.K., Loss, S.R., Marichal, R., Matula, R., Moos, J.H., Moreno, G., Morón-Ríos, A., Muys, B., Neirynck, J., Norgrove, L., Novo, M., Nuutinen, V., Nuzzo, V., Mujeeb Rahman, P., Pansu, J., Paudel, S., Pérès, G., Pérez-Camacho, L., Piñeiro, R., Ponge, J.-F., Rashid, M.I., Rebollo, S., Rodeiro-Iglesias, J., Rodríguez, M.Á., Roth, A.M., Rousseau, G.X., Rozen, A., Sayad, E., Van Schaik, L., Scharenbroch, B.C., Schirrmann, M., Schmidt, O., Schröder, B., Seeber, J., Shashkov, M.P., Singh, J., Smith, S.M., Steinwandter, M., Talavera, J.A., Trigo, D., Tsukamoto, J., De Valença, A.W., Vanek, S.J., Virto, I., Wackett, A.A., Warren, M.W., Wehr, N.H., Whalen, J.K., Wironen, M.B., Wolters, V., Zenkova, I.V., Zhang, W., Cameron, E.K. and Eisenhauer, N., 2019. Global distribution of earthworm diversity. Science 366: 480-485. https://doi.org/10.1126/science.aax4851
Pokarzhevskii, A.D., Zaboyev, D.P., Ganin, G.N. and Gordienko, S.A., 1997. Amino acids in earthworms: are earthworms ecosystemivorous? Soil Biology and Biochemistry 29: 559-567. https://doi.org/10.1016/S0038-0717(96)00180-0
Premalatha, M., Abbasi, T., Abbasi, T. and Abbasi, S.A., 2011. Energy-efficient food production to reduce global warming and ecodegradation: the use of edible insects. Renewable and Sustainable Energy Reviews 15: 4357-4360. https://doi.org/10.1016/j.rser.2011.07.115
Rumpold, B.A. and Schlüter, O.K., 2013. Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research 57: 802-823. https://doi.org/10.1002/mnfr.201200735
Shear, W.A., 2015. The chemical defenses of millipedes (Diplopoda): biochemistry, physiology and ecology. Biochemical Systematics and Ecology 61: 78-117. https://doi.org/10.1016/j.bse.2015.04.033
Smith, B. and Akinbamijo, O.O., 2000. Micronutrients and reproduction in farm animals. Animal Reproduction Science 60-61: 549-560. https://doi.org/10.1016/S0378-4320(00)00114-7
Trofimova, L., Ksenofontov, A., Mkrtchyan, G., Graf, A., Baratova, L. and Bunik, V., 2016. Quantification of rat brain amino acids: analysis of the data consistency. Current Analytical Chemistry 12: 349-356. https://doi.org/10.2174/1573411011666151006220356
Tsugita, A. and Scheffler, J.-J., 1982. A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. European Journal of Biochemistry 124: 585-588. https://doi.org/10.1111/j.1432-1033.1982.tb06634.x
Tzachor, A., Richards, C.E. and Holt, L., 2021. Future foods for risk-resilient diets. Nature Food 2: 326-329. https://doi.org/10.1038/s43016-021-00269-x
WHO, 2009. Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO Global Database on Vitamin A Deficiency. World Health Organization, Geneva.
Willer, D.F., Nicholls, R.J. and Aldridge, D.C., 2021. Opportunities and challenges for upscaled global bivalve seafood production. Nature Food 2: 935-943. https://doi.org/10.1038/s43016-021-00423-5
Zhang, S., Chang, L., McLaughlin, N., Cui, S., Wu, H., Wu, D., Liang, W. and Liang, A., 2021. Complex soil food web enhances the association between N mineralization and soybean yield – a model study from long-term application of a conservation tillage system in a black soil of Northeast China. SOIL 7: 71-82. https://doi.org/10.5194/soil-7-71-2021
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 464 | 162 | 26 |
Full Text Views | 13 | 3 | 0 |
PDF Views & Downloads | 32 | 12 | 0 |
‘Hidden hunger’ occurs in humans and livestock and stems from deficiencies in microelements, essential amino acids, and vitamins. Triggered by insufficient intake of micronutrients in food and feed, even when macronutrients are abundant, hidden hunger can result in the development of serious diseases and pathological conditions. Finding sufficient micronutrients is often challenging because they are either obtained from limited external natural sources or synthesised de novo. Soil-dwelling saprophages comprise one of the largest proportions of zoomasses on Earth but remain surprisingly overlooked as a potential micronutrient source. To assess their nutritional content concerning micronutrients, we selected 31 invertebrate species obtained from natural ecosystems of European Russia or widely cultivated species originating mainly from tropical regions. They belong to major soil saprophage taxa: cockroaches (Blattodea), beetle (Coleoptera) larvae and imagoes, springtails (Collembola), millipedes (Diplopoda), fly (Diptera) larvae, earthworms (Haplotaxida), woodlice (Isopoda), crickets (Orthoptera). We assessed their proteinogenic amino acid, microelement, and vitamin composition. Taxonomic differences in the composition and ratio of micronutrients were determined and we identified specific taxa naturally enriched with micronutrients for future consideration as potential candidates for incorporation into food and feed supplements to alleviate hidden hunger in livestock and humans.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 464 | 162 | 26 |
Full Text Views | 13 | 3 | 0 |
PDF Views & Downloads | 32 | 12 | 0 |