The black soldier fly (BSF), Hermetia illucens. L (Diptera: Stratiomyidae), is often harnessed to transform organic waste into nutrient-rich larval biomass, providing an alternative animal feed in the aquaculture industry. In Israel, rosemary (Rosmarinus officinalis) is a common ornamental plant in gardens that also demonstrates insecticidal and repellent properties and medicinal value. This study focuses on utilizing rosemary waste to produce nutrient-enriched BSF larvae for animal feed and potential medical applications. We evaluated BSF larval survivability, adult emergence and metabolomics following supplementation with different percentages of rosemary leaves (4%, 15%, and 20%, relative to 25 g of the total Gainesville diet). Surprisingly, we observed 95-99.6% larval survivability in the rosemary treatments, comparable to the control. Larval body weight slightly decreased by 4%, 12%, and 20%, respectively, measured as 219 ± 3 mg, 220 ± 3 mg, and 219 ± 4 mg, respectively, compared to the control (249 ± 5 mg) (x̄ ± SE;
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abo Ghanima, M.M., Elsadek, M.F., Taha, A.E., Abd El-Hack, M.E., Alagawany, M., Ahmed, B.M., Elshafie, M.M. and El-Sabrout, K., 2020. Effect of housing system and rosemary and cinnamon essential oils on layers performance, egg quality, haematological traits, blood chemistry, immunity, and antioxidant. Animals 10: 245. https://doi.org/10.3390/ani10020245
Afonso, M.S., De O Silva, A.M., Carvalho, E.B., Rivelli, D.P., Barros, S.B., Rogero, M.M., Lottenberg, A.M., Torres, R.P. and Mancini-Filho, J., 2013. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutrition and Metabolism 10: 19. https://doi.org/10.1186/1743-7075-10-19
Almela, L., Sánchez-Muñoz, B., Fernández-López, J.A., Roca, M.J. and Rabe, V., 2006. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. Journal of Chromatography A 1120: 221-229. https://doi.org/10.1016/j.chroma.2006.02.056
Andreadis, S.S., Panteli, N., Mastoraki, M., Rizou, E., Stefanou, V., Tzentilasvili, S., Sarrou, E., Chatzifotis, S., Krigas, N. and Antonopoulou, E., 2022. Towards functional insect feeds: agri-food by-products enriched with post-distillation residues of medicinal aromatic plants in Tenebrio molitor (Coleoptera: Tenebrionidae) breeding. Antioxidants 11: 68. https://doi.org/10.3390/antiox11010068
Bajalan, I., Rouzbahani, R., Pirbalouti, A.G. and Maggi, F., 2017. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Industrial Crops and Products 107: 305-311. https://doi.org/10.1016/j.indcrop.2017.05.063
Bakaaki, N., Aanyu, M., Onen, H., Opio, D., Sengendo, F. and Chemurot, M., 2023. Growth performance of the black soldier fly, Hermetia illucens larvae (Linnaeus, 1758) fed on honeybee propolis-treated wheat bran. Journal of Insects as Food and Feed 9: 281-287. https://doi.org/10.3920/JIFF2022.0047
Barragan-Fonseca, K.B., Dicke, M. and van Loon, J.J.A., 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – a review. Journal of Insects as Food and Feed 3: 105-120. https://doi.org/10.3920/JIFF2016.0055
Behmer, S.T. and Joern, A., 1993. Diet choice by a grass-feeding grasshopper based on the need for a limiting nutrient. Functional Ecology 7: 522-527. https://doi.org/10.2307/2390127
Bernays, E.A. and Woodhead, S., 1984. The need for high levels of phenylalanine in the diet of Schistocerca gregaria nymphs. Journal of Insect Physiology 30: 489-493. https://doi.org/10.1016/0022-1910(84)90029-5
Borea, P.A., Gessi, S., Merighi, S. and Varani, K., 2016. Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends in Pharmacological Sciences 37: 419-434. https://doi.org/10.1016/j.tips.2016.02.006
Bouchebti, S., Bodner, L., Bergman, M., Magory Cohen, T. and Levin, E., 2022. The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis). Scientific Reports 12: 7449. https://doi.org/10.1038/s41598-022-11579-w
Brewer, L.R., Kubola, J., Siriamornpun, S., Herald, T.J. and Shi, Y.C., 2014. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chemistry 152: 483-490. https://doi.org/10.1016/j.foodchem.2013.11.128
Brunet, P.C.J., 1980. The metabolism of the aromatic amino acids concerned in the cross-linking of insect cuticle. Insect Biochemistry 10: 467-500. https://doi.org/10.1016/0020-1790(80)90082-7
Colinet, H. and Renault, D., 2014. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster. Comparative Biochemistry and Physiology – Part A 170: 6-14. https://doi.org/10.1016/j.cbpa.2014.01.004
De-Eknamkul, W. and Ellis, B.E., 1987. Tyrosine aminotransferase: the entry point enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytohemistry 26: 1941-1946. https://doi.org/10.1016/S0031-9422(00)81734-3
Elhag, O., Zhou, D., Song, Q., Soomro, A.A., Cai, M., Zheng, L., Yu, Z. and Zhang, J., 2017. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PLOS ONE 12: 1-15. https://doi.org/10.1371/journal.pone.0169582
Fontana, A.R., Antoniolli, A. and Bottini, R.N., 2013. Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. Journal of Agricultural and Food Chemistry 61: 8987-9003. https://doi.org/10.1021/jf402586f
Fuchs, S., Behrends, V., Bundy, J.G., Crisanti, A. and Nolan, T., 2014. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito. PLOS ONE 9: e84865. https://doi.org/10.1371/journal.pone.0084865
Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4.
Hannour, K., Boughdad, A., Maataoui, A. and Bouchelta, A., 2018. Chemical composition of Rosmarinus officinalis (Lamiaceae) essential oils and evaluation of their toxicity against Bruchus rufimanus (Coleoptera: Chrysomelidae: Bruchinae) in Morocco. International Journal of Tropical Insect Science 38: 192-204. https://doi.org/10.1017/S1742758418000012
Harach, T., Aprikian, O., Monnard, I., Moulin, J., Membrez, M., Béolor, J.C., Raab, T., Macé, K. and Darimont, C., 2010. Rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and liver steatosis in mice fed a high-fat diet. Planta Medica 76: 566-571. https://doi.org/10.1055/s-0029-1240612
Herrmann, K.M. and Weaver, L.M., 1999. The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology 50: 473-503. https://doi.org/10.1146/annurev.arplant.50.1.473
Hogsette, J.A., 1992. New diets for production of house flies and stable flies (Diptera: Muscidae) in the laboratory. Journal of Economic Entomology 85: 2291-2294. https://doi.org/10.1093/jee/85.6.2291
Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K. and Nishioka, T., 2010. MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry 45: 703-714. https://doi.org/10.1002/jms.1777
Hou, C., Xiao, G., Amakye, W.K., Sun, J., Xu, Z. and Ren, J., 2021. Guidelines for purine extraction and determination in foods. Food Frontiers 2: 557-573. https://doi.org/10.1002/fft2.100
Ibba, M. and Soll, D., 2000. Aminoacyl-tRNA synthesis. Annual Review of Biochemistry 69: 617-650. https://doi.org/10.1146/annurev.biochem.69.1.617
Isman, M.B., Wilson, J.A. and Bradbury, R., 2008. Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis) against larvae of Pseudaletia unipuncta and Trichoplusia ni in relation to their chemical compositions. Pharmaceutical Biology 46: 82-87. https://doi.org/10.1080/13880200701734661
Jahanian, H., Kahkeshani, N., Alireza, S.-D., Isman, M.B., Saeedi, M. and Khanavi, M., 2022. Rosmarinus officinalis as a natural insecticide: a review. International Journal of Pest Management. https://doi.org/10.1080/09670874.2022.2046889
Jensen, A.B. and Lecocq, A., in press. Diseases of black soldier flies Hermetia illucens L. a future challenge for production? Journal of Insects as Food and Feed. https://doi.org/10.3920/JIFF2023.0030
Joosten, L., Lecocq, A., Jensen, A.B., Haenen, O., Schmitt, E. and Eilenberg, J., 2020. Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production. Entomologia Experimentalis et Applicata 168: 432-447. https://doi.org/10.1111/eea.12916
Kumar, P., 2019. Role of food and nutrition in cancer. In: Singh, R.B., Watson, R.R. and Takahashi, T. (eds.) The role of functional food security in global health. Academic Press, Cambridge, MA, USA, pp. 193-203. https://doi.org/10.1016/C2016-0-04169-4
Kwon, Y.-I.I., Vattem, D.A. and Shetty, K., 2006. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition 15: 107-118.
Lecocq, A., Joosten, L., Schmitt, E., Eilenberg, J. and Jensen, A.B., 2021. Hermetia illucens adults are susceptible to infection by the fungus Beauveria bassiana in laboratory experiments. Journal of Insects as Food and Feed 7: 63-68. https://doi.org/10.3920/JIFF2020.0042
Li, X.W., Zhang, Z.J., Hafeez, M., Huang, J., Zhang, J.M., Wang, L.K. and Lu, Y.B., 2021. Rosmarinus officinialis L. (Lamiales: Lamiaceae), a promising repellent plant for thrips management. Journal of Economic Entomology 114: 131-141. https://doi.org/10.1093/jee/toaa288
Mani, K., Vitenberg, T., Ben-Mordechai, L., Khatib, S. and Opatovsky, I., 2023a. Effect of yeast supplementation on growth parameters and metabolomics of black soldier fly larvae, Hermetia illucens (L.) (Diptera: Stratiomyidae). Journal of Insects as Food and Feed 9: 1353-1363. https://doi.org/10.3920/JIFF2022.0168
Mani, K., Vitenberg, T., Ben-Mordechai, L., Schweitzer, R. and Opatovsky, I., 2023b. Comparative untargeted metabolic analysis of natural- and laboratory-reared larvae of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 266: 110851. https://doi.org/10.1016/j.cbpb.2023.110851
Mani, K., Vitenberg, T., Khatib, S. and Opatovsky, I., 2023c. Effect of entomopathogenic fungus Beauveria bassiana on the growth characteristics and metabolism of black soldier fly larvae. Pesticide Biochemistry and Physiology 197: 105684. https://doi.org/10.1016/j.pestbp.2023.105684
Manville, R.W., Baldwin, S.N., Eriksen, E.Ø., Jepps, T.A. and Abbott, G.W., 2023. Medicinal plant rosemary relaxes blood vessels by activating vascular smooth muscle KCNQ channels. FASEB Journal 37: e23125. https://doi.org/10.1096/fj.202301132R
Mena, P., Cirlini, M., Tassotti, M., Herrlinger, K.A., Dall’Asta, C. and Del Rio, D., 2016. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 21: 1576. https://doi.org/10.3390/molecules21111576
Michalkova, V., Benoit, J.B., Weiss, B.L., Attardo, G.M. and Aksoy, S., 2014. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Applied and Environmental Microbiology 80: 5844-5853. https://doi.org/10.1128/AEM.01150-14
Mizukami, H., Ogawa, T., Ohashi, H. and Ellis, B.E., 1992. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract. Plant Cell Reports 11: 480-483. https://doi.org/10.1007/BF00232695
Mohimani, H., Gurevich, A., Shlemov, A., Mikheenko, A., Korobeynikov, A., Cao, L., Shcherbin, E., Nothias, L.F., Dorrestein, P.C. and Pevzner, P.A., 2018. Dereplication of microbial metabolites through database search of mass spectra. Nature Communications 9: 4035. https://doi.org/10.1038/s41467-018-06082-8
Moretta, A., Salvia, R., Scieuzo, C., Di Somma, A., Vogel, H., Pucci, P., Sgambato, A., Wolff, M. and Falabella, P., 2020. A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Scientific Reports 10: 16875. https://doi.org/10.1038/s41598-020-74017-9
Nakagawa, S., Hillebrand, G.G. and Nunez, G., 2020. Rosmarinus officinalis L. (rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of staphylococcus aureus virulence. Antibiotics 9: 149. https://doi.org/10.3390/antibiotics9040149
Negri, P., Ramirez, L., Quintana, S., Szawarski, N., Maggi, M., Conte Le, Y., Lamattina, L. and Eguaras, M., 2017. Dietary supplementation of honey bee larvae with arginine and abscisic acid enhances nitric oxide and granulocyte immune responses after trauma. Insects 8: 85. https://doi.org/10.3390/insects8030085
Ngo, S.N.T., Williams, D.B. and Head, R.J., 2011. Rosemary and cancer prevention: preclinical perspectives. Critical Reviews in Food Science and Nutrition 51: 946-954. https://doi.org/10.1080/10408398.2010.490883
Ong, M., Chomistek, N., Dayment, H., Goerzen, W. and Baines, D., 2020. Insecticidal activity of plant powders against the parasitoid, Pteromalus venustus, and its host, the Alfalfa leafcutting bee. Insects 11: 359. https://10.3390/insects11060359
Pang, Z., Chong, J., Zhou, G., De Lima Morais, D.A., Chang, L., Barrette, M., Gauthier, C., Jacques, P.É., Li, S. and Xia, J., 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research 49: W388-W396. https://doi.org/10.1093/nar/gkab382
Pavlidi, N., Vontas, J. and Van Leeuwen, T., 2018. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science 27: 97-102. https://doi.org/10.1016/j.cois.2018.04.007
Reddy, S.R.R. and Campbell, J.W., 1969. Arginine metabolism in insects: role of arginine in proline formation during silkmoth development. Biochemical Journal 115: 495-503. https://doi.org/10.1042/bj1150495
Roeder, T., 2005. Tyramine and octopamine: ruling behavior and metabolism. Annual Review of Entomology 50: 447-477. https://doi.org/10.1146/annurev.ento.50.071803.130404
Salman, S.Y., Özdemir, S.N. and Sevim, S., 2018. Toxicity and repellency of sage (Salvia officinalis L.) (Lamiaceae) and rosemary (Rosmarinus officinalis L.) (Lamiaceae) extracts to Neoseiulus californicus (McGregor, 1954) and Phytoseiulus persimilis Athias-Henriot, 1957 (Acari: Phytoseiidae). Turkiye Entomoloji Dergisi Entomological Society of Turkey 42: 151-160. http://dx.doi.org/10.16970/entoted.384194
Sasaki, K., El Omri, A., Kondo, S., Han, J. and Isoda, H., 2013. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behavioural Brain Research 238: 86-94. https://doi.org/10.1016/j.bbr.2012.10.010
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498-2504. https://doi.org/10.1101/gr.1239303
Tai, J., Cheung, S., Wu, M. and Hasman, D., 2012. Antiproliferation effect of rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 19: 436-443. https://doi.org/10.1016/j.phymed.2011.12.012
Teulier, L., Weber, J.M., Crevier, J. and Darveau, C.A., 2016. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proceedings of the Royal Society B: Biological Sciences Royal Society of London 283. https://doi.org/10.1098/rspb.2016.0333
Tumpa, T.A., Salam, M.A. and Rana, K.M.S., 2021. Black soldier fly larvae: multidimensional prospects in household waste management, feed, fertilizer and bio-fuel industries of Bangladesh. Journal of Fisheries 2: 45-56. https://doi.org/10.18801/jflvs.020121.06
Ullevig, S.L., Zhao, Q., Zamora, D. and Asmis, R., 2011. Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis 219: 409-416. https://doi.org/10.1016/j.atherosclerosis.2011.06.013
Van Moll, L., De Smet, J., Paas, A., Tegtmeier, D., Vilcinskas, A., Cos, P. and Van Campenhout, L., 2022. In vitro evaluation of antimicrobial peptides from the black soldier fly (Hermetia illucens) against a selection of human pathogens. Microbiology Spectrum 10: e01664-21. https://doi.org/10.1128/spectrum.01664-21
Vaquero, M.R., Yáñez-Gascón, M.J., Garcı́a Villalba, R., Larrosa, M., Fromentin, E., Ibarra, A., Roller, M., Tomás-Barberán, F., de Gea, J.C. and Garcı́a-Conesa, M.T., 2012. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in Carnosic acid. PLOS ONE 7: e39773. https://doi.org/10.1371/journal.pone.0039773
Vitenberg, T. and Opatovsky, I., 2022. Assessing fungal diversity and abundance in the black soldier fly and its environment. Journal of Insect Science 22: 3. https://doi.org/10.1093/jisesa/ieac066
Vogel, H., Müller, A., Heckel, D.G., Gutzeit, H. and Vilcinskas, A., 2018. Nutritional immunology: diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Developmental and Comparative Immunology 78: 141-148. https://doi.org/10.1016/j.dci.2017.09.008
Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A.V., Meehan, M.J., Liu, W.T., Crüsemann, M., Boudreau, P.D., Esquenazi, E., Sandoval-Calderón, M., Kersten, R.D., Pace, L.A., Quinn, R.A., Duncan, K.R., Hsu, C.C., Floros, D.J., Gavilan, R.G., Kleigrewe, K., Northen, T., Dutton, R.J., Parrot, D., Carlson, E.E., Aigle, B., Michelsen, C.F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B.T., Gerwick, L., Liaw, C.C., Yang, Y.L., Humpf, H.U., Maansson, M., Keyzers, R.A., Sims, A.C., Johnson, A.R., Sidebottom, A.M., Sedio, B.E., Klitgaard, A., Larson, C.B., Boya, C.A.P., Torres-Mendoza, D., Gonzalez, D.J., Silva, D.B., Marques, L.M., Demarque, D.P., Pociute, E., O’Neill, E.C., Briand, E., Helfrich, E.J.N., Granatosky, E.A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J.J., Zeng, Y., Vorholt, J.A., Kurita, K.L., Charusanti, P., McPhail, K.L., Nielsen, K.F., Vuong, L., Elfeki, M., Traxler, M.F., Engene, N., Koyama, N., Vining, O.B., Baric, R., Silva, R.R., Mascuch, S.J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P.G., Dai, J., Neupane, R., Gurr, J., Rodrı́guez, A.M.C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B.M., Almaliti, J., Allard, P.M., Phapale, P., Nothias, L.F., Alexandrov, T., Litaudon, M., Wolfender, J.L., Kyle, J.E., Metz, T.O., Peryea, T., Nguyen, D.T., VanLeer, D., Shinn, P., Jadhav, A., Müller, R., Waters, K.M., Shi, W., Liu, X., Zhang, L., Knight, R., Jensen, P.R., Palsson, B., Pogliano, K., Linington, R.G., Gutiérrez, M., Lopes, N.P., Gerwick, W.H., Moore, B.S., Dorrestein, P.C. and Bandeira, N., 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology 34: 828-837. https://doi.org/10.1038/nbt.3597
Wang, W., Li, N., Luo, M., Zu, Y. and Efferth, T., 2012. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 17: 2704-2713. https://doi.org/10.3390/molecules17032704
Xia, J., Ge, C. and Yao, H., 2021. Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals 11: 1937. https://doi.org/10.3390/ani11071937
Yang, R. and Shetty, K., 1998. Stimulation of rosmarinic acid in shoot cultures of oregano (Origanum vulgare) clonal line in response to proline, proline analogue, and proline precursors. Journal of Agricultural and Food Chemistry 46: 2888-2893. https://doi.org/10.1021/jf9802629
Yang, Y., Isman, M.B. and Tak, J.H., 2020. Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia bark essential oil against Sitophilus zeamais Motschulsky. Insects 11: 474. https://doi.org/10.3390/insects11080474
Yesilbag, D., Gezen, S.S., Biricik, H. and Bulbul, T., 2012. Effect of a rosemary and oregano volatile oil mixture on performance, lipid oxidation of meat and haematological parameters in Pharaoh quails. British Poultry Science 53: 89-97. https://doi.org/10.1080/00071668.2012.654763
Zhang, P., Zhou, Y., Qin, D., Chen, J. and Zhang, Z., 2022. Metabolic changes in larvae of predator Chrysopa sinica fed on azadirachtin-treated Plutella xylostella larvae. Metabolites 12: 158. https://doi.org/10.3390/metabo12020158
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 193 | 193 | 36 |
Full Text Views | 13 | 13 | 0 |
PDF Views & Downloads | 24 | 24 | 1 |
The black soldier fly (BSF), Hermetia illucens. L (Diptera: Stratiomyidae), is often harnessed to transform organic waste into nutrient-rich larval biomass, providing an alternative animal feed in the aquaculture industry. In Israel, rosemary (Rosmarinus officinalis) is a common ornamental plant in gardens that also demonstrates insecticidal and repellent properties and medicinal value. This study focuses on utilizing rosemary waste to produce nutrient-enriched BSF larvae for animal feed and potential medical applications. We evaluated BSF larval survivability, adult emergence and metabolomics following supplementation with different percentages of rosemary leaves (4%, 15%, and 20%, relative to 25 g of the total Gainesville diet). Surprisingly, we observed 95-99.6% larval survivability in the rosemary treatments, comparable to the control. Larval body weight slightly decreased by 4%, 12%, and 20%, respectively, measured as 219 ± 3 mg, 220 ± 3 mg, and 219 ± 4 mg, respectively, compared to the control (249 ± 5 mg) (x̄ ± SE;
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 193 | 193 | 36 |
Full Text Views | 13 | 13 | 0 |
PDF Views & Downloads | 24 | 24 | 1 |