Cognitive innovation has shaped and transformed our cognitive capacities throughout history. Until recently, cognitive innovation has not received much attention by empirical and conceptual research in the cognitive sciences. This paper is a first attempt to help close this gap. It will be argued that cognitive innovation is best understood in connection with cumulative cultural evolution and enculturation. Cumulative cultural evolution plays a vital role for the inter-generational transmission of the products of cognitive innovation. Furthermore, there are at least two important functions of enculturation for cognitive innovation. First, enculturation is responsible for the ontogenetic acquisition of cognitive practices governing the interaction with innovative products. Second, successful processes of enculturation provide opportunities for subsequent innovative processes. The trans-generational trajectory of calculation from mathematical symbol systems to the first digital computers will serve as a paradigm example of the delicate interplay of cognitive innovation, cumulative cultural evolution, and enculturation.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909–4917.
Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245–266. https://doi.org/http://doi.org/10.1017/S0140525X10000853.
Anderson, M. L. (2015). After phrenology: Neural reuse and the interactive brain. Cambridge, Mass: MIT Press.
Anderson, M. L., & Finlay, B. L. (2014). Allocating structure to function: The strong links between neuroplasticity and natural selection. Frontiers in Human Neuroscience, 1–16. https://doi.org/10.3389/fnhum.2013.00918.
Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.
Ansari, D. (2012). Culture and education: New frontiers in brain plasticity. Trends in Cognitive Sciences, 16(2), 93–95. https://doi.org/10.1016/j.tics.2011.11.016.
Bacharach, S., & Tollefsen, D. (2010). We did it: From mere contributors to coauthors. The Journal of Aesthetics and Art Criticism, 68(1), 23–32.
Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, 108(Supplement 2), 10918–10925.
Burge, T. (1986). Individualism and psychology. The Philosophical Review, 95(1), 3–45. https://doi.org/10.2307/2185131.
Carr, K., Kendal, R. L., & Flynn, E. G. (2015). Imitate or innovate? Children’s innovation is influenced by the efficacy of observed behaviour. Cognition, 142, 322–332.
Carr, K., Kendal, R. L., & Flynn, E. G. (2016). Eureka!: What is innovation, how does it develop, and who does it? Child Development, 87(5), 1505–1519.
Chappell, J., Cutting, N., Tecwyn, E. C., Apperly, I. A., Beck, S. R., & Thorpe, S. K. S. (2015). Minding the gap: A comparative approach to studying the development of innovation. In A. B. Kaufman & J. C. Kaufman (Eds.), Animal creativity and innovation (pp. 287–316). London: Academic Press.
Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, Mass.: MIT Press.
Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.
De Cruz, H. (2008). An extended mind perspective on natural number representation. Philosophical Psychology, 21(4), 475–490.
De Cruz, H., & De Smedt, J. (2013). Mathematical symbols as epistemic actions. Synthese, 190(1), 3–19.
Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In S. Dehaene, J.-R. Duhamel, M. D. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain: A Fyssen Foundation Symposium (pp. 133–157). Cambridge, Mass: MIT Press.
Dehaene, S. (2010). Reading in the brain: The new science of how we read. New York: Penguin Books.
Dehaene, S. (2011). The number sense: How the mind creates mathematics (2nd ed.). Oxford: Oxford University Press.
Dehaene, S., & Cohen, L. (1994). Dissociable mechanisms of subitizing and counting: Neuropsychological evidence from simultanagnosic patients. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 958.
Derex, M., & Boyd, R. (2015). The foundations of the human cultural niche. Nature Communications, 6, 1–7.
Dewey, J. (1997). Experience and education. New York: Simon & Schuster.
Donald, M. (1991). Origins of the modern mind: Three stages in the evolution of culture and cognition. Cambridge, Mass: Harvard University Press.
Dotzler, B. J. (2015). Notes by the translator: Charles Babbage and Ada Augusta Lovelace in cooperation [Anmerkung der Übersetzerin: Charles Babbage und Ada Augusta Lovelace in Kooperation]. In S. Krämer (Ed.), Ada Lovelace: The pioneer of computer technology and her successors [Ada Lovelace: Die Pionierin der Computertechnik und ihre Nachfolgerinnen] (pp. 53–67). Paderborn: Wilhelm Fink.
Downey, G., & Lende, D. H. (2012). Neuroanthropology and the encultured brain. In D. H. Lende & G. Downey (Eds.), The encultured brain: An introduction to neuroanthropology (pp. 23–65). Cambridge, Mass: MIT Press.
Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), 1–113.
Dutilh Novaes, C. (2013). Mathematical reasoning and external symbolic systems. Logique & Analyse, 221, 45–65.
Dutilh Novaes, C. (2014). Formal languages in logic: A philosophical and cognitive analysis. Cambridge: Cambridge University Press.
Estany, A., & Martínez, S. (2014). “Scaffolding” and “affordance” as integrative concepts in the cognitive sciences. Philosophical Psychology, 27, 98–111. https://doi.org/10.1080/09515089.2013.828569.
Everett, C. (2017). Numbers and the making of us: Counting and the course of human cultures. Cambridge, Mass: Harvard University Press.
Fodor, J. A. (1980). Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences, 3(1), 63–73.
Furuya, S., & Altenmüller, E. (2013). Flexibility of movement organization in piano performance. Frontiers in Human Neuroscience, 1–10. https://doi.org/10.3389/fnhum.2013.00173.
Gigerenzer, G. (2000). Adaptive thinking: Rationality in the real world. Oxford: Oxford University Press.
Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G., & Dehaene, S. (2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in Cognitive Sciences, 19(7), 374–382.
Henrich, J. P. (2016). The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton: Princeton University Press.
Heyes, C. (2016). Born pupils? Natural pedagogy and cultural pedagogy. Perspectives on Psychological Science, 11(2), 280–295.
Isaacson, W. (2015). The innovators: How a group of hackers, geniuses and geeks created the digital revolution. London, New York: Simon & Schuster.
Kendal, J. R. (2011). Cultural niche construction and human learning environments: Investigating sociocultural perspectives. Biological Theory, 6(3), 241–250.
Krämer, S. (2003). Writing, notational iconicity, calculus: On writing as a cultural technique. MLN, 118(3), 518–537.
Krämer, S. (2015). Why is Ada Lovelace said to be the “first programmer” and what does “programming” mean after all? [Wieso gilt Ada Lovelace als die “erste Programmiererin” und was bedeutet überhaupt “programmieren”?]. In S. Krämer (Ed.), Ada Lovelace: The pioneer of computer technology and her successors [Ada Lovelace: Die Pionierin der Computertechnik und ihre Nachfolgerinnen] (pp. 75–89). Paderborn: Wilhelm Fink.
Laland, K. N. (2017). Darwin’s unfinished symphony: How culture made the human mind. New Jersey: Princeton University Press.
Laland, K. N., & O’Brien, M. J. (2011). Cultural niche construction: An introduction. Biological Theory, 6(3), 191–202.
Lane, D. A. (2016). Innovation cascades: Artefacts, organization and attributions. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371: 20150, 1–9.
Legare, C. H., & Nielsen, M. (2015). Imitation and innovation: The dual engines of cultural learning. Trends in Cognitive Sciences, 19(11), 688–699.
Lyons, I. M., Ansari, D., & Beilock, S. L. (2015). Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain. Human Brain Mapping, 36(2), 475–488.
MacKinnon, K. C., & Fuentes, A. (2012). Primate social cognition, human evolution, and niche construction: A core context for neuroanthropology. In D. H. Lende & G. Downey (Eds.), The encultured brain: An introduction to neuroanthropology (pp. 67–102). Cambridge, Mass: MIT Press.
Menabrea, L. F. (1989). Sketch of the analytical engine invented by Charles Babbage: With notes upon the memoir by the translator, Ada Augusta, Countess of Lovelace. In P. Morrison & E. Morrison (Eds.), Charles Babbage: On the principles and development of the calculator and other seminal writings (pp. 225–295). Mineola: Dover Publications.
Menary, R. (2007). Cognitive integration: Mind and cognition unbounded. Basingstoke, New York: Palgrave Macmillan.
Menary, R. (2010). Dimensions of mind. Phenomenology and the Cognitive Sciences, 9(4), 561–578. https://doi.org/10.1007/S11097-010-9186-7.
Menary, R. (2013). The enculturated hand. In Z. Radman (Ed.), The hand, an organ of the mind: What the manual tells the mental (pp. 349–367). Cambridge, Mass: MIT Press.
Menary, R. (2014). Neural plasticity, neuronal recycling and niche construction. Mind & Language, 29(3), 286–303. https://doi.org/10.1111/mila.12051.
Menary, R. (2015). Mathematical cognition: A case of enculturation. In T. Metzinger & J. M. Windt (Eds.), Open MIND (pp. 1–20). Frankfurt am Main: MIND Group.
Menary, R. (2016). Pragmatism and the pragmatic turn in cognitive science. In D. Engel, Andreas K., Friston, K., & Kragic (Ed.), Where is the action? The pragmatic turn in cognitive science (pp. 219–237). Cambridge, Mass: MIT Press.
Menary, R., & Kirchhoff, M. (2014). Cognitive transformations and extended expertise. Educational Philosophy and Theory, 46(6), 610–623.
Merkley, R., & Ansari, D. (2016). Why numerical symbols count in the development of mathematical skills: Evidence from brain and behavior. Current Opinion in Behavioral Sciences, 10, 14–20.
Mesoudi, A., Laland, K. N., Boyd, R., Buchanan, B., Flynn, E., McCauley, R. N., … Tennie, C., (2013). The cultural evolution of technology and science. In P. J. Richerson & M. H. Christiansen (Eds.), Cultural evolution: Society, technology, language, and religion (pp. 193–216). Cambridge, Mass.: MIT Press.
Muthukrishna, M., & Henrich, J. (2016). Innovation in the collective brain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1690), 1–14. https://doi.org/10.1098/rstb.2015.0192.
Odling-Smee, J., & Laland, K. N. (2011). Ecological inheritance and cultural inheritance: What are they and how do they differ? Biological Theory, 6(3), 220–230.
Putnam, H. (1975). The meaning of “meaning.” In K. Gunderson (Ed.), Minnesota studies in philosophy of science (Vol. 7, pp. 131–193). Minneapolis: University of Minnesota Press.
Rowlands, M. (1991). Towards a reasonable version of methodological solipsism. Mind & Language, 6(1), 39–57.
Rowlands, M. (1995). Against methodological solipsism: The ecological approach. Philosophical Psychology, 8(1), 5–24.
Schröter, J. (2015). Weaving pictures, composing music: Ada Lovelace and the computer as universal medium [Bilder weben, Musik komponieren: Ada Lovelace und das Universalmedium Computer]. In S. Krämer (Ed.), Ada Lovelace: The pioneer of computer technology and her successors [Ada Lovelace: Die Pionierin der Computertechnik und ihre Nachfolgerinnen] (pp. 69–74). Paderborn: Wilhelm Fink.
Seife, C. (2000). Zero: The biography of a dangerous idea. London, New York: Penguin Books.
Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. Malden, Mass: Blackwell.
Sterelny, K. (2012). The evolved apprentice: How evolution made humans unique. Cambridge, Mass: MIT Press.
Sterelny, K. (2016a). Adaptable individuals and innovative lineages. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1690), 1–7. https://doi.org/10.1098/rstb.2015.0196.
Sterelny, K. (2016b). Cumulative cultural evolution and the origins of language. Biological Theory, 11(3), 173–186. https://doi.org/10.1007/s13752-016-0247-1.
Stotz, K. (2010). Human nature and cognitive–developmental niche construction. Phenomenology and the Cognitive Sciences, 9(4), 483–501. https://doi.org/10.1007/s11097-010-9178-7.
Tebbich, S., Griffin, A. S., Peschl, M. F., Sterelny, K., Lefebvre, L., Lefebvre, L., … Patience, M., (2016). From mechanisms to function: An integrated framework of animal innovation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1690), 1–11. https://doi.org/10.1098/rstb.2015.0195.
Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1528), 2405–2415.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 230–265.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, Mass: Harvard University Press.
Wilson, A. C. (1985). The molecular basis of evolution. Scientific American, 253(4), 164–173.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 591 | 157 | 5 |
Full Text Views | 448 | 26 | 4 |
PDF Views & Downloads | 196 | 20 | 0 |
Cognitive innovation has shaped and transformed our cognitive capacities throughout history. Until recently, cognitive innovation has not received much attention by empirical and conceptual research in the cognitive sciences. This paper is a first attempt to help close this gap. It will be argued that cognitive innovation is best understood in connection with cumulative cultural evolution and enculturation. Cumulative cultural evolution plays a vital role for the inter-generational transmission of the products of cognitive innovation. Furthermore, there are at least two important functions of enculturation for cognitive innovation. First, enculturation is responsible for the ontogenetic acquisition of cognitive practices governing the interaction with innovative products. Second, successful processes of enculturation provide opportunities for subsequent innovative processes. The trans-generational trajectory of calculation from mathematical symbol systems to the first digital computers will serve as a paradigm example of the delicate interplay of cognitive innovation, cumulative cultural evolution, and enculturation.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 591 | 157 | 5 |
Full Text Views | 448 | 26 | 4 |
PDF Views & Downloads | 196 | 20 | 0 |