From the Dynamic Structure of the Brain to the Emergence of Time Experiences

in KronoScope
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Time perception remains an open question in cognitive neurosciences. Mechanisms for the encoding of time come in different flavors but the evidence remain sparse for the simplest questions, for instance, which areas in the brain constitute the most reliable sources for the encoding of time? Indeed, not one brain lesion in the cortex can account on its own for a total impairment in timing functions. The aim of this contribution is to highlight key concepts in the history of cognitive neurosciences that are relevant to the study of time perception. An alternative or a complementary approach to the classic clock model view is provided regarding ways in which the brain could automatically encode temporal properties.

KronoScope

Journal for the Study of Time

Sections

References

AlaisD.BurrD. “The Ventriloquist Effect Results from Near-optimal Bimodal Integration” Curr Biol 2004 14 3 257 262

AshidaG.CarrC. E. “Sound Localization: Jeffress and Beyond” Current Opinion in Neurobiology 2011 21 745 751 doi:10.1016/j.conb.2011.05.008

BattelliL.WalshV.Pascual-LeoneA.CavanaghP. “The ‘when’ Parietal Pathway Explored by Lesion Studies” Current Opinion in Neurobiology 2008 18 120 126 doi:10.1016/j.conb.2008.08.004

BergsonH. Essai Sur Les Donn es Imm diates De La Conscience 1888 144th ed. Paris Les Presses universitaires de France

BertelsonP.AscherslebenG. “Temporal Ventriloquism: Crossmodal Interaction on the Time Dimension 1. Evidence from Auditory—Visual Temporal Order Judgment” Int J Psychophysiol 2003 50 147 155

BraginA.JandoG.NadasdyZ.HetkeJ.WiseK.BuzsakiG. “Gamma (40-100 Hz) Oscillation in the Hippocampus of the Behaving Rat” Journal of Neuroscience 1995 15 47 60

BuhusiC. V.MeckW. H. “What Makes Us Tick? Functional and Neural Mechanisms of Interval Timing” Nat Rev Neurosci 2005 6 755 765 doi:10.1038/nrn1764

BuzsákiG. Rhythms of the Brain 2006 Oxford Oxford University Press

BuzsákiG. “Neural Syntax: Cell Assemblies, Synapsembles, and Readers” Neuron 2010 68 362 385 doi:10.1016/j.neuron.2010.09.023

CanoltyR. T.EdwardsE.DalalS. S.SoltaniM.NagarajanS. S.KirschH. E.BergerM. S.BarbaroN. M.KnightR. T. “High Gamma Power Is Phase-locked to Theta Oscillations in Human Neocortex” Science 2006 313 1626 1628

ClayE. R. The Alternative: A Study in Psychology 1882 London Macmillan

CraigA. D. “How Do You Feel? Interoception: The Sense of the Physiological Condition of the Body” Nat Rev Neurosci 2002 3 655 666 doi:10.1038/nrn894

EaglemanD. M.JacobsonJ. E.SejnowskiT. J. “Perceived Luminance Depends on Temporal Context” Nature 2004 428 854 856

EaglemanD. M.PariyadathV. “Is Subjective Duration a Signature of Coding Efficiency?” Philosophical Transactions of the Royal Society B: Biological Sciences 2009 364 1841 1851 doi:10.1098/rstb.2009.0026

ErnstM. O.BülthoffH. H. “Merging the Senses into a Robust Percept” Trends Cogn Sci 2004 8 4 162 169

FraisseP. Psychologie du Temps 1957 Paris Presses Universitaires de France

FristonK. “The Free-energy Principle: a Unified Brain Theory?” Nat Rev Neurosci 2010 11 127 138 doi:10.1038/nrn2787

HolcombeA. O. “Seeing Slow and Seeing Fast: Two Limits on Perception” Trends in Cognitive Sciences 2009 13 216 221 doi:10.1016/j.tics.2009.02.005

HowardI. P.TempletonW. B. Human Spatial Orientation 1966 Oxford John Wiley & Sons

JamesW. The Principles of Psychology 1890 New York Holt

JanssenP.ShadlenM. N. “A Representation of the Hazard Rate of Elapsed Time in Macaque Area LIP” Nat Neurosci 2005 8 234 241 doi:10.1038/nn1386

JeffressL. A. “A Place Theory of Sound Localization” J Comp Physiol Psychol 1948 41 35 39

KonishiM. “Centrally Synthesized Maps of Sensory Space” Trends in Neurosciences 1986 9 163 168 doi:10.1016/0166-2236(86)90053-6

LakatosP.ShahA. S.KnuthK. H.UlbertI.KarmosG.SchroederC. E. “An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex” Journal of Neurophysiology 2005 94 1904 1911 doi:10.1152/jn.00263.2005

LakatosP.KarmosG.MehtaA. D.UlbertI.SchroederC. E. “Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection” Science 2008 320 110 113 doi:10.1126/science.1154735

LestienneR.BuserP. Cerveau, information et connaissance 2001 CNRS Editions

LibetB. Mind Time: The Temporal Factor in Consciousness 2004 Cambridge Harvard University Press

LismanJ. E.IdiartM. A. “Storage of 7 +/- 2 Short-term Memories in Oscillatory Subcycles” Science 1995 267 1512 1515 doi:10.1126/science.7878473

LlinásR.RibaryU.ContrerasD.PedroarenaC. “The Neuronal Basis for Consciousness” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 1998 353 1841 1849 doi:10.1098/rstb.1998.0336

LuoH.PoeppelD. “Phase Patterns of Neuronal Responses Reliably Discriminate Speech in Human Auditory Cortex” Neuron 2007 54 1001 1010 doi:10.1016/j.neuron.2007.06.004

MaW. J.PougetA. “Linking Neurons to Behavior in Multisensory Perception: A Computational Review” Brain Research 2008 1242 4 12 doi:10.1016/j.brainres.2008.04.082

MacarF.VidalF. “Event-related Potentials as Indices of Time Processing: a Review” J Psychophysiol 2004 18 89 104

MarrD. Vision: a Computational Investigation into the Human Representation and Processing of Visual Information 1982 New York Henry Holt & Co

MooreB. C. J. “An Introduction to the Psychology of Hearing” 1997 San Diego Academic Press

Mullette-GillmanO. A.CohenY. E.GrohJ. M. “Eye-Centered, Head-Centered, and Complex Coding of Visual and Auditory Targets in the Intraparietal Sulcus” Journal of Neurophysiology 2005 94 2331 2352 doi:10.1152/jn.00021.2005

PanzeriS.BrunelN.LogothetisN. K.KayserC. “Sensory Neural Codes Using Multiplexed Temporal Scales” Trends in Neurosciences 2010 33 111 120 doi:10.1016/j.tins.2009.12.001

PiéronH. The Sensations: Their Functions, Processes, and Mechanisms 1952 Yale University Press

PöppelE. “Oscillations as Possible Basis for Time Perception” Stud Gen (Berl) 1971 24 85 107

PöppelE. “A Hierarchical Model of Temporal Perception” Trends Cogn Sci 1997 1 56 61

PöppelE. “Pre-semantically Defined Temporal Windows for Cognitive Processing” Philosophical Transactions of the Royal Society B: Biological Sciences 2009 364 1887 1896 doi:10.1098/rstb.2009.0015

RauscheckerJ. P.TianB. “Mechanisms and Streams for Processing of ‘what’ and ‘where’ in Auditory Cortex” Proceedings of the National Academy of Sciences 2000 97 11800 11806 doi:10.1073/pnas.97.22.11800

SkaggsW. E.McNaughtonB. L.WilsonM. A.BarnesC. A. “Theta Phase Precession in Hippocampal Neuronal Populations and the Compression of Temporal Sequences” Hippocampus 1996 6 149 172 doi:10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K

SiegelM.DonnerT. H.EngelA. K. Spectral fingerprints of large-scale neuronal interactions Nature Reviews Neurosciences 2012 13 121 134 doi:10.1038/nrn3137

StrattonG. M. “Vision Without Inversion of the Retinal Image” Psychological Review 1897 4 341 360 doi:10.1037/h0075482

ThomasG. J. “Experimental Study of the Influence of Vision on Sound Localization” Journal of Experimental Psychology 1941 28 167 177

TreismanA. “The Binding Problem” Current Opinion in Neurobiology 1996 6 171 178

TreismanM. “Temporal Discrimination and the Indifference Interval. Implications for a Model of the‘ Internal Clock’” Psychol Monogr 1963 77 1 31

UngerleiderL. G.HaxbyJ. V. “ ‘What’ and ‘where’ in the Human Brain” Current Opinion in Neurobiology 1994 4 157 165 doi:10.1016/0959-4388(94)90066-3

Van RullenR.KochC. “Is Perception Discrete or Continuous?” Trends in Cognitive Sciences 2003 7 207 213 doi:10.1016/S1364-6613(03)00095-0

von BaerK. E. von BaerK. E. “Welche Auffassung Der Lebenden Natur Ist Die Richtige?” Reden Gehalten in Wissenschaftlichen Versammlungen Und Kleinere Aufsätze Vermischten Inhalts 1876 St. Petersburg Schmitzdorff

VroomenJ.KeetelsM. “Perception of Intersensory Synchrony: A Tutorial Review” Attention, Perception, & Psychophysics 2010 72 871 884 doi:10.3758/APP.72.4.871

WangX-J. “Neurophysiological and Computational Principles of Cortical Rhythms in Cognition” Physiological Reviews 2010 90 1195 1268 doi:10.1152/physrev.00035.2008

van WassenhoveV. “Minding Time in an Amodal Representational Space” Philosophical Transactions of the Royal Society B: Biological Sciences 2009 364 1815 1830 doi:10.1098/rstb.2009.0023

WienerM.T.PeterCoslettH. B. “The Image of Time: A Voxel-wise Meta-analysis” NeuroImage 2010 49 1728 1740 doi:10.1016/j.neuroimage.2009.09.064

WundtW. Grundzuge der physiologischen Psychologie 1874 Leipzig Engelmann

Figures

  • Schematic illustration of Jeffress’ Place Theory of Auditory Spatial Localization (1948). Coincidence detectors of phase-delays between the left and right auditory inputs encode the spatial position of an auditory source, transforming temporal information on the microseconds scale into a place code.
    View in gallery
  • Processing streams in cortex. In white and gray, the dual-stream (or “what”/ “where” pathways) proposed by Ungerleider and Haxby (1994) and the analogous dichotomy described in the auditory system (Rauscheker and Tian 2000). In black, the recently suggested “when” pathway (Batelli et al. 2008). A: auditory cortex; V: visual cortex; MT: middle temporal (also known as V5); STG: superior temporal gyrus; TPJ: temporo-parietal junction.
    View in gallery
  • Clock model hypothesis. Three major components constitute the clock: a pacemaker, an accumulator or counter and a comparator.
    View in gallery
  • Implementation of the clock model hypothesis as “cortico-striatal beat frequency model” (adapted from Buhusi & Meck 2005). This model implies a centralized clock of reference and has received a substantial amount of evidence for interval timing (above the second range). BG: basal ganglia; GPe: globus pallidus external segment; GPi: globus pallidus internal segment; PPC: posterior partietal cortex; PFC: prefrontal cortex; SMA: supplementary motor area; SNR: substantia nigra pars reticulata; SNC: substantia nigra pars compacta; Th: thalamus.
    View in gallery
  • Mesoscopic observations of brain function. Electro- and magnetoencephalography (EEG, MEG) record non-invasively the extracellular electric and associated magnetic flux of thousands of neurons originating in the dendritic arborization of pyramidal cortical cells. Local Field Potentials (LFPs) are comparable signals. Action potentials generated at the single neuron level originate from the differences of electrical charges in and out of the cellular milieu.
    View in gallery
  • Hippocampal cell assemblies (adapted from Buszàki, 2010). The response profile of five cell assemblies (P1-P5) are here depicted with different shades of grey. Each cell assembly is tuned to five different positions (1-5) in a maze. When the rat passes one of those locations (e.g. 2), neurons of the corresponding cell assembly (e.g. P2) maximally fire. In other words, cells in P2 code for position 2. More interestingly, the time at which maximal firing takes place in one assembly (e.g. P1) with respect to another (e.g. P2) appears to be tightly related to the time it takes the rat to go from one location (1) to another location (2) in the maze. Specifically, as the rat moves across the maze, the cell assembly tuned to the location that the rat is about to pass starts firing earlier in time with respect to the ongoing theta oscillation. Hence, the position of the maximal firing in the cell assembly encodes the location of the rat with respect to the ongoing temporal reference frame provided by the theta oscillation.
    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 11 11 4
Full Text Views 2 2 2
PDF Downloads 1 1 1
EPUB Downloads 0 0 0