Multisensory stimuli originating from the same event can be perceived asynchronously due to differential physical and neural delays. The transduction of and physiological responses to vestibular stimulation are extremely fast, suggesting that other stimuli need to be presented prior to vestibular stimulation in order to be perceived as simultaneous. There is, however, a recent and growing body of evidence which indicates that the perceived onset of vestibular stimulation is slow compared to the other senses, such that vestibular stimuli need to be presented prior to other sensory stimuli in order to be perceived synchronously. From a review of this literature it is speculated that this perceived latency of vestibular stimulation may reflect the fact that vestibular stimulation is most often associated with sensory events that occur following head movement, that the vestibular system rarely works alone, that additional computations are required for processing vestibular information, and that the brain prioritizes physiological response to vestibular stimulation over perceptual awareness of stimulation onset. Empirical investigation of these theoretical predictions is encouraged in order to fully understand this surprising result, its implications, and to advance the field.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alvarez-Buylla R., Ramirez de Arellano J. (1952). Local responses in Pacinian corpuscles, Am. J. Physiol. 172, 237–244.
Angelaki D. E., Cullen K. E. (2008). Vestibular system: the many facets of a multimodal sense, Ann. Rev. Neurosci. 31, 125–150.
Angelaki D. E., McHenry M. Q., Dickman J. D., Newlands S. D., Hess B. J. (1999). Computation of inertial motion: neural strategies to resolve ambiguous otolith information, J. Neurosci. 19, 316–327.
Barnett-Cowan M., Harris L. R. (2009). Perceived timing of vestibular stimulation relative to touch, light and sound, Exp. Brain Res. 198, 221–231.
Barnett-Cowan M., Harris L. R. (2011). Temporal processing of active and passive head movement, Exp. Brain Res. 214, 27–35.
Barnett-Cowan M., Dyde R. T., Harris L. R. (2005). Is an internal model of head orientation necessary for oculomotor control? Ann. N. Y. Acad. Sci. 1039, 314–324.
Barnett-Cowan M., Nolan H., Butler J., Foxe J., Reilly R., Bülthoff H. (2010). Reaction time and event-related potentials to visual, auditory and vestibular stimuli, J. Vision 10, 1400.
Barnett-Cowan M., Raeder S. M., Bülthoff H. H. (2012). Persistent perceptual delay for head movement onset relative to auditory stimuli of different durations and rise times, Exp. Brain Res. 220, 41–50.
Baxter B., Travis R. C. (1938). The reaction time to vestibular stimuli, J. Exp. Psychol. 22, 277–282.
Benson A., Hutt E., Brown S. (1989). Thresholds for the perception of whole body angular movement about a vertical axis, Av. Space. Env. Med. 60, 205–213.
Bertolini G., Ramat S., Laurens J., Bockisch C. J., Marti S., Straumann D., Palla A. (2011). Velocity storage contribution to vestibular self-motion perception in healthy human subjects, J. Neurophysiol. 105, 209–223.
Bertolini G., Ramat S., Bockisch C. J., Marti S., Straumann D., Palla A. (2012). Is vestibular self-motion perception controlled by the velocity storage? Insights from patients with chronic degeneration of the vestibulo-cerebellum, PloS One 7, e36763.
Biguer B., Donaldson I. M. L., Hein A., Jeannerod M. (1988). Neck muscle vibration modifies the representation of visual motion and direction in man, Brain 111, 1405–1424.
Boyle R., Belton T. I. M., McCrea R. A. (1996). Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey, Ann. N. Y. Acad. Sci. 781, 244–263.
Brandt T. (1991). Man in motion, Brain 114, 2159–2174.
Chang N.-Y. N., Uchanski R. M., Hullar T. E. (2012). Temporal integration of auditory and vestibular stimuli, Laryngoscope 122, 1379–1384.
Chen A., DeAngelis G. C., Angelaki D. E. (2011). A comparison of vestibular spatiotemporal tuning in macaque cortical areas PIVC, VIP and MSTd, J. Neurosci. 31, 3082–3094.
Chen A., DeAngelis G. C., Angelaki D. E. (2012). Representation of vestibular and visual cues to self-motion in ventral intraparietal (VIP) cortex, J. Neurosci. 31, 12036–12052.
Clark B., Stewart J. D. (1962). Perception of angular acceleration about the yaw axis of a flight simulation: thresholds and reaction latency for research pilots, Aerospace Med. 33, 1426–1432.
Corey D. P., Hudspeth A. J. (1979). Ionic basis of the receptor potential in a vertebrate hair cell, Nature 281, 675–677.
Crane B. T., Tian J., Wiest G., Demer J. L. (2003). Initiation of the human heave linear vestibulo-ocular reflex, Exp. Brain Res. 148, 247–255.
Cullen K. E., Huterer M., Braidwood D. A., Sylvestre P. A. (2004). Time course of vestibuloocular reflex suppression during gaze shifts, J. Neurophysiol. 92, 3408–3422.
Cullen K. E., Brooks J. X., Jamali M., Carriot J., Massot C. (2011). Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing, Exp. Brain Res. 210, 377–388.
de Waele C., Baudonnière P. M., Lepecq J. C., Tran Ba Huy P., Vidal P. P. (2001). Vestibular projections in the human cortex, Exp. Brain Res. 141, 541–551.
Dorandi T. (1999). Chronology (Ch. 2), in: The Cambridge History of Hellenistic Philosophy, Algra K. (Ed.), pp. 52–53. Cambridge University Press, Cambridge, UK.
Doty R. L. (1969). Effect of duration of stimulus presentation on the angular acceleration threshold, J. Exp. Psychol. 80, 317–321.
Düring I. (1957). Aristotle in the Ancient Biographical Tradition. Almquist and Wicksell, Stockholm, Sweden.
Ebata S., Sugiuchi Y., Izawa Y., Shinomiya K., Shinoda Y. (2004). Vestibular projection to the periarcuate cortex in the monkey, Neurosci. Res. 49, 55–68.
Egmond A., Groen J., Jongkees L. (1949). The mechanics of the semicircular canal, J. Physiol. 110, 1–17.
Engel G., Dougherty W. (1971). Visual–auditory distance constancy, Nature 234, 308.
Fernández C., Goldberg J. M. (1976). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force, J. Neurophysiol. 39, 970–984.
Fitzpatrick R. C., Day B. L. (2004). Probing the human vestibular system with galvanic stimulation, J. Appl. Physiol. 96, 2301–2316.
Fredrickson J. M., Scheid P., Figge U., Kornhuber H. H. (1966). Vestibular nerve projection to the cerebral cortex of the rhesus monkey, Exp. Brain Res. 2, 318–327.
Goldberg J. M., Wilson V. J., Cullen K. E., Angelaki D. E., Broussard D. M., Büttner-Ennever J. A., Fukushima K., Minor L. B. (2012a). The Vestibular System — A Sixth Sense. Oxford University Press, New York, USA.
Goldberg J. M., Wilson V. J., Cullen K. E., Angelaki D. E., Broussard D. M., Büttner-Ennever J. A., Fukushima K., Minor L. B. (2012b). Historical overview, in: The Vestibular System: A Sixth Sense, p. 4. Oxford University Press, New York, USA.
Grabherr L., Nicoucar K., Mast F. W., Merfeld D. M. (2008). Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency, Exp. Brain Res. 186, 677–681.
Grant P., Lee P. T. S. (2007). Motion-visual phase-error detection in a flight simulator, J. Aircraft 44, 927–935.
Guedry F. E. (1974). Psychophysics of vestibular stimulation, in: Handbook of Sensory Physiology, Vol. 6: Vestibular System, Kornhuber H. H. (Ed.), pp. 3–154. Springer-Verlag, New York, USA.
Guedry F. E., Richmond G. (1957). Differences in response latency with different magnitude angular accelerations, USAMRL Report 301.
Heerspink H. M., Berkouwer W. R., Stroosma O., van Paassen M. M., Mulder M., Mulder J. A. (2005). Evaluation of vestibular thresholds for motion detection in the Simona research simulator, in: Proc. AIAA Modeling and Simulation Technologies Conference and Exhibit, San Francisco, CA, USA. AIAA-2005-6502.
Henmon V. A. C. (1914). Professor Cattell’s work on reaction time, in: The Psychological Researches of James McKeen Cattell, Archives of Psychology, Woodworth B. S. (Ed.), pp. 1–33. The Science Press, New York, USA.
Huterer M., Cullen K. E. (2002). Vestibuloocular reflex dynamics during high-frequency and high-acceleration rotations of the head on body in rhesus monkey, J. Neurophysiol. 88, 13–28.
Jones G. M., Young L. R. (1978). Subjective detection of vertical acceleration: a velocity-dependent response? Acta Oto-laryngol. 85, 45–53.
Kopinska A., Harris L. R. (2004). Simultaneity constancy, Perception 33, 1049–1060.
Lorente De Nó R. (1933). Vestibulo-ocular reflex arc, Arch. Neurol. Psychiatr. 30, 245–291.
McCrea R. A., Gdowski G. T., Boyle R., Belton T. (1999). Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons, J. Neurophysiol. 82, 416–428.
Meiry J. L. (1965). The vestibular system and human dynamic space orientation. PhD Thesis, p. 193, Massachusetts Institute of Technology, Cambridge, MA, USA.
Merfeld D., Park S., Gianna-Poulin C., Black F., Wood S. (2004). Qualitatively different strategies are used to elicit reflexive and cognitive responses, J. Vest. Res. 14, 109–110.
Merfeld D. M., Park S., Gianna-Poulin C., Black F. O., Wood S. (2005a). Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt, J. Neurophysiol. 94, 186–198.
Merfeld D. M., Park S., Gianna-Poulin C., Black F. O., Wood S. (2005b). Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined tilt and translation, J. Neurophysiol. 94, 199–205.
Mulder W. (1908). Quantitative betrekking tusschen prikkel en effect bij het statisehe organ. PhD Thesis, University of Utrecht; NASA Technical Translation F-11, 489 (1968).
Munde V. S., Vlaskamp C., Maes B., Ruijssenaars A. J. J. M. (2012). Catch the wave! Time-window sequential analysis of alertness stimulation in individuals with profound intellectual and multiple disabilities, Child Care Health Dev., 1–11. DOI:10.1111/j.1365-2214.2012.01415.x
Nolan H., Whelan R., Reilly R. B., Bulthoff H. H., Butler J. S. (2009). Acquisition of human EEG data during linear self-motion on a Stewart platform, in: Proc. 4th Int. SaD1.9 IEEE EMBS Conf. Neural Engineering, pp. 585–588.
Odkvist L. M., Schwarz D. W., Fredrickson J. M., Hassler R. (1974). Projection of the vestibular nerve to the area 3a arm field in the squirrel monkey (saimiri sciureus), Exp. Brain Res. 21, 97–105.
Purkinje J. (1820). Beiträge zur näheren Kenntniss des Schwindels aus heautognostischen Daten, Medicinische Jahrbücher des Kaiserlich-königlichen Österreichischen Staates 6, 79–125.
Rodenburg M., Stassen H. P. W., Maas A. J. J. (1981). The threshold of perception of angular acceleration as a function of duration, Biol. Cyb. 226, 223–226.
Roll R., Velay J. L., Roll J. P. (1991). Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities, Exp. Brain Res. 85, 423–431.
Ross W. D. (1931). The Works of Aristotle, Vol 3. Clarendon Press, Oxford, UK.
Roy J. E., Cullen K. E. (2001). Passive activation of neck proprioceptive inputs does not influence the discharge patterns of vestibular nuclei neurons, Ann. N. Y. Acad. Sci. 942, 486–489.
Roy J. E., Cullen K. E. (2002). Vestibuloocular reflex signal modulation during voluntary and passive head movements, J. Neurophysiol. 87, 2337–2357.
Sanders M. C., Chang N.-Y. N., Hiss M. M., Uchanski R. M., Hullar T. E. (2011). Temporal binding of auditory and rotational stimuli, Exp. Brain Res. 210, 539–547.
Setti A., Burke K. E., Kenny R. A., Newell F. N. (2011). Is inefficient multisensory processing associated with falls in older people? Exp. Brain Res. 209, 375–384.
Shams L., Kamitani Y., Shimojo S. (2000). What you see is what you hear, Nature 408, 788.
Sharples R. (2003). On dizziness, in: Theophrastus of Eresus: on Sweat, on Dizziness and on Fatigue, Fortenbaugh W. W., Sharples R. W., Sollenberger M. G. (Eds), pp. 169–250. Brill, Leiden, The Netherlands.
Soyka F. (2013). A Cybernetic Approach to Self-motion Perception. PhD Thesis, Eberhard-Karls-Universität, Tübingen, Germany.
Soyka F., Robuffo Giordano P., Beykirch K., Bülthoff H. H. (2011). Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane, Exp. Brain Res. 209, 95–107.
Soyka F., Giordano P. R., Barnett-Cowan M., Bülthoff H. H. (2012). Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles, Exp. Brain Res. 220, 89–99.
Soyka F., Bülthoff H. H., Barnett-Cowan M. (2013). Temporal processing of self-motion: modeling reaction times for rotations and translations, Exp. Brain Res. (in press). DOI:10.1007/s00221-013-3536-y
Sugita Y., Suzuki Y. (2003). Implicit estimation of sound-arrival time, Nature 421, 911.
Takahashi K., Gu Y., May P. J., Newlands S. D., Gregory C., Angelaki D. E. (2008). Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity, J. Neurosci. 27, 9742–9756.
Taylor J. L., McCloskey D. I. (1991). Illusions of head and visual target displacement induced by vibration of neck muscles, Brain 114, 755–759.
Wade N. J. (2003). The search for a sixth sense: the cases for vestibular, muscle, and temperature senses, J. Hist. Neurosci. 12, 175–202.
Wilmer T. (1953). Discharge patterns and functional organization of mammalian retina, J. Neurophysiol. 16, 37–68.
Wilson V., Melvill Jones G. (1979). Mammalian Vestibular Physiology. Plenum Press, New York, USA.
Young L., Meiry J. (1968). A revised dynamic otolith model, Aerospace Med. 39, 606–608.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1287 | 280 | 16 |
Full Text Views | 349 | 23 | 0 |
PDF Views & Downloads | 208 | 61 | 0 |
Multisensory stimuli originating from the same event can be perceived asynchronously due to differential physical and neural delays. The transduction of and physiological responses to vestibular stimulation are extremely fast, suggesting that other stimuli need to be presented prior to vestibular stimulation in order to be perceived as simultaneous. There is, however, a recent and growing body of evidence which indicates that the perceived onset of vestibular stimulation is slow compared to the other senses, such that vestibular stimuli need to be presented prior to other sensory stimuli in order to be perceived synchronously. From a review of this literature it is speculated that this perceived latency of vestibular stimulation may reflect the fact that vestibular stimulation is most often associated with sensory events that occur following head movement, that the vestibular system rarely works alone, that additional computations are required for processing vestibular information, and that the brain prioritizes physiological response to vestibular stimulation over perceptual awareness of stimulation onset. Empirical investigation of these theoretical predictions is encouraged in order to fully understand this surprising result, its implications, and to advance the field.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1287 | 280 | 16 |
Full Text Views | 349 | 23 | 0 |
PDF Views & Downloads | 208 | 61 | 0 |