Visual-Somatosensory Integration and Balance: Evidence for Psychophysical Integrative Differences in Aging

in Multisensory Research
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Research detailing multisensory integration (MSI) processes in aging and their association with clinically relevant outcomes is virtually non-existent. To our knowledge, the relationship between MSI and balance has not been well-established in aging. Given known alterations in unisensory processing with increasing age, the aims of the current study were to determine differential behavioral patterns of MSI in aging and investigate whether MSI was significantly associated with balance and fall-risk. Seventy healthy older adults (M=75 years; 58% female) participated in the current study. Participants were instructed to make speeded responses to visual, somatosensory, and visual-somatosensory (VS) stimuli. Based on reaction times (RTs) to all stimuli, participants were classified into one of two groups (MSI or NO MSI), depending on their MSI RT benefit. Static balance was assessed using mean unipedal stance time. Overall, results revealed that RTs to VS stimuli were significantly shorter than those elicited to constituent unisensory conditions. Further, the current experimental design afforded differential patterns of multisensory processing, with 75% of the elderly sample demonstrating multisensory enhancements. Interestingly, 25% of older adults did not demonstrate multisensory RT facilitation; a finding that was attributed to extremely fast RTs overall and specifically in response to somatosensory inputs. Individuals in the NO MSI group maintained significantly better unipedal stance times and reported less falls, compared to elders in the MSI group. This study reveals the existence of differential patterns of multisensory processing in aging, while describing the clinical translational value of MSI enhancements in predicting balance and falls risk.

Visual-Somatosensory Integration and Balance: Evidence for Psychophysical Integrative Differences in Aging

in Multisensory Research



  • BaltesP. B.LindenbergerU. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol. Aging 121221.

  • BeckA. T.EpsteinN.BrownG.SteerR. A. (1988). An inventory for measuring clinical anxiety: psychometric propertiesJ. Consult. Clin. Psychol. 56893897.

  • Brett-GreenB. A.MillerL. J.SchoenS. A.NielsenD. M. (2010). An exploratory event-related potential study of multisensory integration in sensory over-responsive childrenBrain Res. 13216777.

  • BuschkeH.KuslanskyG.KatzM.StewartW. F.SliwinskiM. J.EckholdtH. M.LiptonR. B. (1999). Screening for dementia with the memory impairment screenNeurology 52231238.

  • CalvertG. A.SpenceC.SteinB. E. (Eds) (2004). The Handbook of Multisensory Processes. MIT PressCambridge, MA, USA.

  • CamicioliR.PanzerV. P.KayeJ. (1997). Balance in the healthy elderly: posturography and clinical assessmentArch. Neurol. 54976981.

  • CarabelleseC.AppollonioI.RozziniR.BianchettiA.FrisoniG. B.FrattolaL.TrabucchiM. (1993). Sensory impairment and quality of life in a community elderly populationJ. Am. Geriatr. Soc. 41401407.

  • CascioC. J.Foss-FeigJ. H.BurnetteC. P.HeacockJ. L.CosbyA. A. (2012). The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioceptionAutism 16406419.

  • ColoniusH.DiederichA. (2006). The race model inequality: interpreting a geometric measure of the amount of violationPsychol. Rev. 113148154.

  • DiederichA.ColoniusH.SchomburgA. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration modelNeuropsychologia 4625562562.

  • DuffK.Humphreys ClarkJ. D.O’BryantS. E.MoldJ. W.SchifferR. B.SutkerP. B. (2008). Utility of the RBANS in detecting cognitive impairment associated with Alzheimer’s disease: sensitivity, specificity, and positive and negative predictive powersArch. Clin. Neuropsychol. 23603612.

  • EngelA. K.SenkowskiD.SchneiderT. R. (2012). Multisensory integration through neural coherence in: The Neural Bases of Multisensory ProcessesMurrayM. M.WallaceM. T. (Eds) Ch. 7. CRC PressBoca Raton, FL, USA.

  • EriksenC. W.GoettlB.St JamesJ. D.FournierL. R. (1989). Processing redundant signals: coactivation, divided attention, or what? Percept. Psychophys. 45356370.

  • FortA.DelpuechC.PernierJ.GiardM. H. (2002). Early auditory–visual interactions in human cortex during nonredundant target identificationBrain Res. Cogn. Brain Res. 142030.

  • FoxeJ. J.WylieG. R.MartinezA.SchroederC. E.JavittD. C.GuilfoyleD.RitterW.MurrayM. M. (2002). Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI studyJ. Neurophysiol. 88540543.

  • FoxeJ. J.RossL. A.MolholmS. (2012). Multisensory integration deficits in schizophrenia in: The New Handbook of Multisensory ProcessingSteinB. E. (Ed.). MIT PressCambridge, MA, USA.

  • FreiherrJ.LundströmJ. N.HabelU.ReetzK. (2013). Multisensory integration mechanisms during agingFront. Hum. Neurosci. 7: 863.

  • GalvinJ. E.RoeC. M.PowlishtaK. K.CoatsM. A.MuichS. J.GrantE.MillerJ. P.StorandtM.MorrisJ. C. (2005). The AD8: a brief informant interview to detect dementiaNeurology 65559564.

  • GalvinJ. E.RoeC. M.XiongC.MorrisJ. C. (2006). Validity and reliability of the AD8 informant interview in dementiaNeurology 6719421948.

  • GiardM. H.PeronnetF. (1999). Auditory–visual integration during multimodal object recognition in humans: a behavioral and electrophysiological studyJ. Cogn. Neurosci. 11473490.

  • GondanM.LangeK.RoslerF.RoderB. (2004). The redundant target effect is affected by modality switch costsPsychon. Bull. Rev. 11307313.

  • HarringtonL. K.PeckC. K. (1998). Spatial disparity affects visual–auditory interactions in human sensorimotor processingExp. Brain Res. 122247252.

  • HoltzerR.VergheseJ.XueX.LiptonR. B. (2006). Cognitive processes related to gait velocity: results from the Einstein Aging StudyNeuropsychology 20215223.

  • HoltzerR.FriedmanR.LiptonR. B.KatzM.XueX.VergheseJ. (2007). The relationship between specific cognitive functions and falls in agingNeuropsychology 21540548.

  • HoltzerR.VergheseJ.WangC.HallC. B.LiptonR. B. (2008a). Within-person across-neuropsychological test variability and incident dementiaJ. Am. Med. Assoc. 300823830.

  • HoltzerR.GoldinY.ZimmermanM.KatzM.BuschkeH.LiptonR. B. (2008b). Robust norms for selected neuropsychological tests in older adultsArch. Clin. Neuropsychol. 23531541.

  • HoltzerR.WangC.VergheseJ. (2014). Performance variance on walking while talking tasks: theory, findings, and clinical implicationsAge (Dordr.) 36373381.

  • HoltzerR.MahoneyJ.VergheseJ. (in press). Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adultsJ. Gerontol. A Biol. Sci. Med. Sci.

  • HuM. H.WoollacottM. H. (1994a). Multisensory training of standing balance in older adults: I. Postural stability and one-leg stance balanceJ. Gerontol. 49M5261.

  • HuM. H.WoollacottM. H. (1994b). Multisensory training of standing balance in older adults: II. Kinematic and electromyographic postural responsesJ. Gerontol. 49M6271.

  • HugenschmidtC. E.MozolicJ. L.LaurientiP. J. (2009). Suppression of multisensory integration by modality-specific attention in agingNeuroreport 20349353.

  • HurvitzE. A.RichardsonJ. K.WernerR. A.RuhlA. M.DixonM. R. (2000). Unipedal stance testing as an indicator of fall risk among older outpatientsArch. Phys. Med. Rehabil. 81587591.

  • HurvitzE. A.RichardsonJ. K.WernerR. A. (2001). Unipedal stance testing in the assessment of peripheral neuropathyArch. Phys. Med. Rehabil. 82198204.

  • JudgeJ. O.KingM. B.WhippleR.CliveJ.WolfsonL. I. (1995). Dynamic balance in older persons: effects of reduced visual and proprioceptive inputJ. Gerontol. A Biol. Sci. Med. Sci. 50M263270.

  • KayeJ. A.OkenB. S.HowiesonD. B.HowiesonJ.HolmL. A.DennisonK. (1994). Neurologic evaluation of the optimally healthy oldest oldArch. Neurol. 5112051211.

  • KinchlaR. (1974). Detecting target elements in multielement arrays: a confusability modelPercept. Psychophys. 15149158.

  • LaforgeR. G.SpectorW. D.SternbergJ. (1992). The relationship of vision and hearing impairment to one-year mortality and functional declineJ. Aging Health 4126148.

  • LaurientiP. J.BurdetteJ. H.MaldjianJ. A.WallaceM. T. (2006). Enhanced multisensory integration in older adultsNeurobiol. Aging 2711551163.

  • LimH. K.KenistonL. P.ShinJ. H.AllmanB. L.MeredithM. A.CiosK. J. (2011). Connectional parameters determine multisensory processing in a spiking network model of multisensory convergenceExp. Brain Res. 213329339.

  • LindenbergerU.BaltesP. B. (1994). Sensory functioning and intelligence in old age: a strong connectionPsychol. Aging 9339355.

  • LordS. R.WardJ. A. (1994). Age-associated differences in sensori-motor function and balance in community dwelling womenAge Ageing 23452460.

  • LordS. R.RogersM. W.HowlandA.FitzpatrickR. (1999). Lateral stability, sensorimotor function and falls in older peopleJ. Am. Geriatr. Soc. 4710771081.

  • MahoneyJ. R.VergheseJ.GoldinY.LiptonR.HoltzerR. (2010). Alerting, orienting, and executive attention in older adultsJ. Int. Neuropsychol. Soc. 16877889.

  • MahoneyJ. R.LiP. C.Oh-ParkM.VergheseJ.HoltzerR. (2011). Multisensory integration across the senses in young and old adultsBrain Res. 14264353.

  • MahoneyJ. R.VergheseJ.DumasK.WangC.HoltzerR. (2012). The effect of multisensory cues on attention in agingBrain Res. 14726373.

  • MasurD. M.SliwinskiM.LiptonR. B.BlauA. D.CrystalH. A. (1994). Neuropsychological prediction of dementia and the absence of dementia in healthy elderly personsNeurology 4414271432.

  • MeredithM. A.SteinB. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integrationJ. Neurophysiol. 56640662.

  • MeredithM. A.AllmanB. L.KenistonL. P.ClemoH. R. (2012). Are bimodal neurons the same throughout the brain? in: The Neural Bases of Multisensory ProcessesCh. 4MurrayM. M.WallaceM. T. (Eds). CRC PressBoca Raton, FL, USA.

  • MeyerG. F.NoppeneyU. (2011). Multisensory integration: from fundamental principles to translational researchExp. Brain Res. 213163166.

  • MillerJ. (1982). Divided attention: evidence for coactivation with redundant signalsCogn. Psychol. 14247279.

  • MillerJ. (1986). Timecourse of coactivation in bimodal divided attentionPercept. Psychophys. 40331343.

  • MolholmS.RitterW.MurrayM. M.JavittD. C.SchroederC. E.FoxeJ. J. (2002). Multisensory auditory–visual interactions during early sensory processing in humans: a high-density electrical mapping studyBrain Res. Cogn. Brain Res. 14115128.

  • MolholmS.RitterW.JavittD. C.FoxeJ. J. (2004). Multisensory visual–auditory object recognition in humans: a high-density electrical mapping studyCereb. Cortex 14452465.

  • MordkoffJ. T.YantisS. (1991). An interactive race model of divided attentionJ. Exp. Psychol. Hum. Percept. Perform. 17520538.

  • MozolicJ. L.HugenschmidtC. E.PeifferA. M.LaurientiP. J. (2012). Multisensory integration and aging in: The Neural Bases of Multisensory ProcessesMurrayM. M.WallaceM. T. (Eds) Ch. 20. CRC PressBoca Raton, FL, USA.

  • MurrayM. M.MolholmS.MichelC. M.HeslenfeldD. J.RitterW.JavittD. C.SchroederC. E.FoxeJ. J. (2005). Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignmentCereb. Cortex 15963974.

  • OldfieldR. C. (1971). The assessment and analysis of handedness: the Edinburgh inventoryNeuropsychologia 997113.

  • PavaniF.SpenceC.DriverJ. (2000). Visual capture of touch: out-of-the-body experiences with rubber glovesPsychol. Sci. 11353359.

  • PeifferA. M.MozolicJ. L.HugenschmidtC. E.LaurientiP. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection taskNeuroreport 1810771081.

  • PerraultT. J.JrVaughanJ. W.SteinB. E.WallaceM. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuliJ. Neurophysiol. 9325752586.

  • RussoN.FoxeJ. J.BrandweinA. B.AltschulerT.GomesH.MolholmS. (2010). Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integrationAutism Res. 3253267.

  • SalthouseT. A. (1985). Speed of behavior and its implication for cognition in: Handbook of the Psychology of AgingBirrenJ. E.SchaieK. W. (Eds) pp.  400426. Van Nostrand Reinhold CoNew York, NY, USA.

  • SalthouseT. A. (1996). The processing-speed theory of adult age differences in cognitionPsychol. Rev. 103403428.

  • SchroederC. E.FoxeJ. J. (2004). Multisensory convergence in early cortical processing in: The Handbook of Multisensory ProcessesCalvertG. A.SpenceC.SteinB. E. (Eds) pp.  295309. MIT PressCambridge, MA, USA.

  • SchurmannM.KolevV.MenzelK.YordanovaJ. (2002). Spatial coincidence modulates interaction between visual and somatosensory evoked potentialsNeuroreport 13779783.

  • SenkowskiD.MolholmS.Gomez-RamirezM.FoxeJ. J. (2006). Oscillatory beta activity predicts response speed during a multisensory audiovisual reaction time task: a high-density electrical mapping studyCereb. Cortex 1615561565.

  • SenkowskiD.Saint-AmourD.GruberT.FoxeJ. J. (2008). Look who’s talking: the deployment of visuo-spatial attention during multisensory speech processing under noisy environmental conditionsNeuroimage 43379387.

  • SettiA.BurkeK. E.KennyR. A.NewellF. N. (2011). Is inefficient multisensory processing associated with falls in older people? Exp. Brain Res. 209375384.

  • SliwinskiM.BuschkeH.StewartW. F.MasurD.LiptonR. B. (1997). The effect of dementia risk factors on comparative and diagnostic selective reminding normsJ. Int. Neuropsychol. Soc. 3317326.

  • StapletonJ.SettiA.DohenyE. P.KennyR. A.NewellF. N. (2014). A standing posture is associated with increased susceptibility to the sound-induced flash illusion in fall-prone older adultsExp. Brain Res. 232423434.

  • StephenJ. M.KnoefelJ. E.AdairJ.HartB.AineC. J. (2010). Aging-related changes in auditory and visual integration measured with MEGNeurosci. Lett. 4847680.

  • SternY.HabeckC.MoellerJ.ScarmeasN.AndersonK. E.HiltonH. J.FlynnJ.SackeimH.Van HeertumR. (2005). Brain networks associated with cognitive reserve in healthy young and old adultsCereb. Cortex 15394402.

  • VergheseJ.BuschkeH.ViolaL.KatzM.HallC.KuslanskyG.LiptonR. (2002). Validity of divided attention tasks in predicting falls in older individuals: a preliminary studyJ. Am. Geriatr. Soc. 5015721576.

  • VergheseJ.WangC.LiptonR. B.HoltzerR.XueX. (2007). Quantitative gait dysfunction and risk of cognitive decline and dementiaJ. Neurol. Neurosurg. Psychiatry 78929935.

  • VergheseJ.AmbroseA. F.LiptonR. B.WangC. (2009a). Neurological gait abnormalities and risk of falls in older adultsJ. Neurol. 257392398.

  • VergheseJ.HoltzerR.LiptonR. B.WangC. (2009b). Quantitative gait markers and incident fall risk in older adultsJ. Gerontol. A Biol. Sci. Med. Sci. 64896901.

  • VergheseJ.HoltzerR.Oh-ParkM.DerbyC. A.LiptonR. B.WangC. (2011). Inflammatory markers and gait speed decline in older adultsJ. Gerontol. A Biol. Sci. Med. Sci. 6610831089.

  • VergheseJ.XueX. (2010). Identifying frailty in high functioning older adults with normal mobilityAge Ageing 39382385.

  • WallaceM. T. (2012). The impact of multisensory alterations in human developmental disabilities and disease: the tip of the iceberg? in: The New Handbook of Multisensory ProcessingSteinB. E. (Ed.). MIT PressCambridge, MA, USA.

  • WallaceM. T.CarriereB. N.PerraultT. J.JrVaughanJ. W.SteinB. E. (2006). The development of cortical multisensory integrationJ. Neurosci. 261184411849.

  • YesavageJ. A.BrinkT. L.RoseT. L.LumO.HuangV.AdeyM.LeirerV. O. (1982). Development and validation of a geriatric depression screening scale: a preliminary reportJ. Psychiatr. Res. 173749.

  • YordanovaJ.KolevV.HohnsbeinJ.FalkensteinM. (2004). Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: evidence from high-resolution event-related potentialsBrain 127351362.


  • View in gallery

    Experimental procedures. (a) Apparatus: Participants rested hands comfortably on a table why maintaining fixation on the computer screen, and were required to make speeded responses to all stimuli, regardless of sensory modality, by pressing a foot pedal located under their right foot. (b) Sensory conditions: Participants received bilateral visual (V), bilateral somatosensory (S), and bilateral multisensory VS stimulus conditions. (c) Sequence of events: Three blocks of V, S, and multisensory VS stimuli (45 trials per block) were randomly presented with random inter-trial-intervals (ITIs) of 1–3 s.

  • View in gallery

    Averaged reaction time (RT) data by modality. (a) Mean RT values (with SEM bars) for V, S, and VS by multisensory integration (MSI) classification. The first set of bars demonstrates the mean RT values for the overall sample (n=70), where RTs to the VS stimuli are significantly shorter compared to RTs of the constituent unisensory stimuli. The next set of bars depicts the mean RT values for the 18 participants that did not demonstrate an MSI effect (see Section 2.5); where there is no meaningful difference between the mean RT to somatosensory alone condition versus the mean RT to multisensory VS condition. The third set of bars illustrates the mean RT values for the 52 participants that demonstrated a MSI effect; overall there is a degradation of mean RT length, where RTs to visual stimuli were longer than RTs to somatosensory stimuli, which were both longer than RTs to multisensory VS conditions. (b) The last two sets of bars in the large dashed rectangle represent the mean RTs of the two MSI sub-classifications, where the first set of bars depicts mean RT values for the MSI: Soma group (n=39) and the second set of bars depicts mean RT values for the MSI: Visual group (n=12).

  • View in gallery

    Cumulative probability model results. Actual (dashed line) and predicted (solid line) cumulative probability values over percentiles by MSI classification and sub-classification. For convenience, results for the NO MSI classification are repeated on the third tier (dashed box).

  • View in gallery

    Results of Miller’s test of the race model. The cumulative probability difference waves (actual minus predicted probability) over the trajectory of averaged responses for each MSI classification and sub-classification. The shaded grey box represents the fastest quartile of RTs (i.e., 25th percentile). Values greater than zero indicate violations of the race model.

  • View in gallery

    Overall Reaction Time (RT) by MSI Classification. Mean RT in milliseconds (with SEM bars) for the NO MSI and MSI groups.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 88 88 20
Full Text Views 194 194 35
PDF Downloads 10 10 5
EPUB Downloads 0 0 0