Cross-modal responses in occipital areas appear to be essential for sensory processing in visually deprived subjects. However, it is yet unclear whether this functional recruitment might be dependent on the sensory channel conveying the information. In order to characterize brain areas showing task-independent, but sensory specific, cross-modal responses in blind individuals, we pooled together distinct brain functional studies in a single based meta-analysis according only to the modality conveying experimental stimuli (auditory or tactile).
Our approach revealed a specific functional cortical segregation according to the sensory modality conveying the non-visual information, irrespectively from the cognitive features of the tasks. In particular, dorsal and posterior subregions of occipital and superior parietal cortex showed a higher cross-modal recruitment across tactile tasks in blind as compared to sighted individuals. On the other hand, auditory stimuli activated more medial and ventral clusters within early visual areas, the lingual and inferior temporal cortex. These findings suggest a modality-specific functional modification of cross-modal responses within different portions of the occipital cortex of blind individuals. Cross-modal recruitment can thus be specifically influenced by the intrinsic features of sensory information.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amedi A., Merabet L. B., Bermpohl F., Pascual-Leone A. (2005). The occipital cortex in the blind lessons about plasticity and vision, Curr. Dir. Psychol. Sci. 14, 306–311.
Amedi A., Stern W. M., Camprodon J. A., Bermpohl F., Merabet L. B., Rotman S., Hemond C., Meijer P., Pascual-Leone A. (2007). Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex, Nat. Neurosci. 10, 687–689.
Anurova I., Renier L., De Volder A. G., Carlson S. & Rauschecker J. P. (in press). Relationship between cortical thickness and functional activation in the early blind, Cereb. Cortex. DOI:10.1093/cercor/bhu009
Büchel C., Price C., Friston K. (1998). A multimodal language region in the ventral visual pathway, Nature 394, 274–277.
Burton H., Sinclair R. J., Dixit S. (2010). Working memory for vibrotactile frequencies: comparison of cortical activity in blind and sighted individuals, Hum. Brain Mapp. 31, 1686–1701.
Chabot N., Charbonneau V., Laramée M.-E., Tremblay R., Boire D., Bronchti G. (2008). Subcortical auditory input to the primary visual cortex in anophthalmic mice, Neurosci. Lett. 433, 129–134.
Cohen L. G., Celnik P., Pascual-Leone A., Corwell A., Falz L., Dambrosia J., Honda M., Sadato N., Gerloff C., Català M. D., Hallett M. (1997). Functional relevance of cross-modal plasticity in blind humans, Nature 389, 180–183.
Collignon O., Davare M., Olivier E., De Volder A. G. (2009). Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study, Brain Topogr. 21, 232–240.
Collignon O., Dormal G., Albouy G., Vandewalle G., Voss P., Phillips C., Lepore F. (2013). Impact of blindness onset on the functional organization and the connectivity of the occipital cortex, Brain 136, 2769–2783.
Collignon O., Vandewalle G., Voss P., Albouy G., Charbonneau G., Lassonde M., Lepore F. (2011). Functional specialization for auditory–spatial processing in the occipital cortex of congenitally blind humans, Proc. Natl Acad. Sci. USA 108, 4435–4440.
De Volder A. G., Toyama H., Kimura Y., Kiyosawa M., Nakano H., Vanlierde A., Wanet- Defalque M.-C., Mishina M., Oda K., Iishiwata K. (2001). Auditory triggered mental imagery of shape involves visual association areas in early blind humans, NeuroImage 14, 129–139.
Desgent S., Ptito M. (2012). Cortical GABAergic interneurons in cross-modal plasticity following early blindness, Neural Plast. 2012, 590725.
Eickhoff S. B., Amunts K., Mohlberg H., Zilles K. (2006). The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results, Cereb. Cortex 16, 268–279.
Eickhoff S. B., Bzdok D., Laird A. R., Kurth F., Fox P. T. (2012). Activation likelihood estimation meta-analysis revisited, NeuroImage 59, 2349–2361.
Eickhoff S. B., Laird A. R., Grefkes C., Wang L. E., Zilles K., Fox P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty, Hum. Brain Mapp. 30, 2907–2926.
Farrell M. J., Laird A. R., Egan G. F. (2005). Brain activity associated with painfully hot stimuli applied to the upper limb: a meta-analysis, Hum. Brain Mapp. 25, 129–139.
Fiehler K., Reuschel J., Rösler F. (2009). Early non-visual experience influences proprioceptive-spatial discrimination acuity in adulthood, Neuropsychologia 47, 897–906.
Fishman M. C., Michael P. (1973). Integration of auditory information in the cat’s visual cortex, Vision Res. 8, 1415–1419.
Frasnelli J., Collignon O., Voss P., Lepore F. (2011). Crossmodal plasticity in sensory loss, Prog. Brain Res. 191, 233–249.
Gougoux F., Belin P., Voss P., Lepore F., Lassonde M., Zatorre R. J. (2009). Voice perception in blind persons: a functional magnetic resonance imaging study, Neuropsychologia 47, 2967–2974.
Gougoux F., Zatorre R. J., Lassonde M., Voss P., Lepore F. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals, PLoS Biol. 3, e27.
Inui K., Okamoto H., Miki K., Gunji A., Kakiji R. (2006). Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study, Cereb. Cortex 16, 18–30.
Ioannides A. A., Liu L., Poghosyan Y., Saridis G. A., Gjedde A., Ptito M., Kupers R. (2013). MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject, Front. Hum. Neurosci. 7, 429.
Kalberlah C., Villringer A., Pleger B. (2013). Dynamic causal modeling suggests serial processing of tactile vibratory stimuli in the human somatosensory cortex — an fMRI study, NeuroImage 74, 164–171.
Kitada R., Okamoto Y., Sasaki A. T., Kochiyama T., Miyahara M., Lederman S. J., Sadato N. (2013). Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind, Front. Hum. Neurosci. 7, 7.
Klemen J., Chambers C. D. (2012). Current perspectives and methods in studying neural mechanisms of multisensory interactions, Neurosci. Biobehav. Rev. 36, 111–133.
Klinge C., Eippert F., Röder B., Büchel C. (2010). Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind, J. Neurosci. 30, 12798–12805.
Kupers R., Fumal A., De Noordhout A. M., Gjedde A., Schoenen J., Ptito M. (2006). Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects, Proc. Natl Acad. Sci. USA 103, 13256–13260.
Kupers R., Pietrini P., Ricciardi E., Ptito M. (2011). The nature of consciousness in the visually deprived brain, Front. Psychol. 2, 19.
Kupers R., Ptito M. (2011). Insights from darkness: what the study of blindness has taught us about brain structure and function, Prog. Brain Res. 192, 17–31.
Kupers R., Ptito M. (2013). Compensatory plasticity and cross-modal reorganization following early visual deprivation, Neurosci. Biobehav. Rev. 41, 36–52.
Leo A., Bernardi G., Handjaras G., Bonino D., Ricciardi E., Pietrini P. (2012). Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals, Neural Plast. 2012, 720278.
Lewis L. B., Saenz M., Fine I. (2010). Mechanisms of cross-modal plasticity in early-blind subjects, J. Neurophysiol. 104, 2995–3008.
Merabet L. B., Pascual-Leone A. (2010). Neural reorganization following sensory loss: the opportunity of change, Nat. Rev. Neurosci. 11, 44–52.
Morrell F. (1972). Visual system’s view of acoustic space, Nature 238, 44–46.
Noppeney U. (2007). The effects of visual deprivation on functional and structural organization of the human brain, Neurosci. Biobehav. Rev. 31, 1169–1180.
Noppeney U., Friston K. J., Price C. J. (2003). Effects of visual deprivation on the organization of the semantic system, Brain 126, 1620–1627.
Pascual-Leone A., Amedi A., Fregni F., Merabet L. B. (2005). The plastic human brain cortex, Annu. Rev. Neurosci. 28, 377–401.
Pascual-Leone A., Hamilton R. (2001). The metamodal organization of the brain, Prog. Brain Res. 134, 427–445.
Pascual-Leone A., Walsh V., Rothwell J. (2000). Transcranial magnetic stimulation in cognitive neuroscience — virtual lesion, chronometry, and functional connectivity, Curr. Opin. Neurobiol. 10, 232–237.
Pietrini P., Furey M. L., Ricciardi E., Gobbini M. I., Wu W.-H. C., Cohen L., Guazzelli M., Haxby J. V. (2004). Beyond sensory images: object-based representation in the human ventral pathway, Proc. Natl Acad. Sci. USA 101, 5658–5663.
Poirier C., Collignon O., Scheiber C., Renier L., Vanlierde A., Tranduy D., Veraart C., De Volder A. G. (2006). Auditory motion perception activates visual motion areas in early blind subjects, NeuroImage 31, 279–285.
Price C. J., Devlin J. T., Moore C. J., Morton C., Laird A. R. (2005). Meta-analyses of object naming: effect of baseline, Hum. Brain Mapp. 25, 70–82.
Ptito M., Fumal A., de Noordhout A. M., Schoenen J., Gjedde A., Kupers R. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers, Exp. Brain Res. 184, 193–200.
Ptito M., Matteau I., Zhi Wang A., Paulson O. B., Siebner H. R., Kupers R. (2012). Crossmodal recruitment of the ventral visual stream in congenital blindness, Neural Plast. 2012, 304045.
Ptito M., Moesgaard S. M., Gjedde A., Kupers R. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind, Brain 128, 606–614.
Raz N., Amedi A., Zohary E. (2005). V1 activation in congenitally blind humans is associated with episodic retrieval, Cereb. Cortex 15, 1459–1468.
Renier L. A., Anurova I., De Volder A. G., Carlson S., Vanmeter J., Rauschecker J. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind, Neuron 68, 138–148.
Ricciardi E., Bonino D., Pellegrini S., Pietrini P. (2013). Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neurosci. Biobehav. Rev. 41, 64–77.
Ricciardi E., Pietrini P. (2011). New light from the dark: what blindness can teach us about brain function, Curr. Opin. Neurol. 24, 357–363.
Ricciardi E., Vanello N., Sani L., Gentili C., Scilingo E. P., Landini L., Guazzelli M., Bicchi A., Haxby J. V., Pietrini P. (2007). The effect of visual experience on the development of functional architecture in hMT+, Cereb. Cortex 17, 2933–2939.
Sadato N., Pascual-Leone A., Grafman J., Deiber M.-P., Ibanez V., Hallett M. (1998). Neural networks for Braille reading by the blind, Brain 121, 1213–1229.
Sadato N., Pascual-Leone A., Grafman J., Ibanez V., Deiber M.-P., Dold G., Hallett M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects, Nature 380, 526–528.
Sani L., Ricciardi E., Gentili C., Vanello N., Haxby J. V., Pietrini P. (2010). Effects of visual experience on the human MT+ functional connectivity networks: an fMRI study of motion perception in sighted and congenitally blind individuals, Front. Syst. Neurosci. 4, 159.
Turkeltaub P. E., Eickhoff S. B., Laird A. R., Fox M., Wiener M., Fox P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses, Hum. Brain Mapp. 33, 1–13.
Vanlierde A., De Volder A. G., Wanet-Defalque M. C., Veraart C. (2003). Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans, NeuroImage 19, 698–709.
Wager T. D., Jonides J., Reading S. (2004). Neuroimaging studies of shifting attention: a meta-analysis, NeuroImage 22, 1679–1693.
Wager T. D., Smith E. E. (2003). Neuroimaging studies of working memory, Cogn. Affect. Behav. Neurosci. 3, 255–274.
Watkins K. E., Shakespeare T. J., O’Donoghue M. C., Alexander I., Ragge N., Cowey A., Bridge H. (2013). Early auditory processing in area V5/MT+ of the congenitally blind brain, J. Neurosci. 33, 18242–18246.
Weeks R., Horwitz B., Aziz-Sultan A., Tian B., Wessinger C. M., Cohen L. G., Hallett M., Rauschecker J. P. (2000). A positron emission tomographic study of auditory localization in the congenitally blind, J. Neurosci. 20, 2664–2672.
Wolbers T., Zahorik P., Giudice N. A. (2011). Decoding the direction of auditory motion in blind humans, NeuroImage 56, 681–687.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 642 | 128 | 10 |
Full Text Views | 188 | 7 | 0 |
PDF Views & Downloads | 38 | 9 | 0 |
Cross-modal responses in occipital areas appear to be essential for sensory processing in visually deprived subjects. However, it is yet unclear whether this functional recruitment might be dependent on the sensory channel conveying the information. In order to characterize brain areas showing task-independent, but sensory specific, cross-modal responses in blind individuals, we pooled together distinct brain functional studies in a single based meta-analysis according only to the modality conveying experimental stimuli (auditory or tactile).
Our approach revealed a specific functional cortical segregation according to the sensory modality conveying the non-visual information, irrespectively from the cognitive features of the tasks. In particular, dorsal and posterior subregions of occipital and superior parietal cortex showed a higher cross-modal recruitment across tactile tasks in blind as compared to sighted individuals. On the other hand, auditory stimuli activated more medial and ventral clusters within early visual areas, the lingual and inferior temporal cortex. These findings suggest a modality-specific functional modification of cross-modal responses within different portions of the occipital cortex of blind individuals. Cross-modal recruitment can thus be specifically influenced by the intrinsic features of sensory information.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 642 | 128 | 10 |
Full Text Views | 188 | 7 | 0 |
PDF Views & Downloads | 38 | 9 | 0 |