Modality Dependent Cross-Modal Functional Reorganization Following Congenital Visual Deprivation within Occipital Areas: A Meta-Analysis of Tactile and Auditory Studies

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

Cross-modal responses in occipital areas appear to be essential for sensory processing in visually deprived subjects. However, it is yet unclear whether this functional recruitment might be dependent on the sensory channel conveying the information. In order to characterize brain areas showing task-independent, but sensory specific, cross-modal responses in blind individuals, we pooled together distinct brain functional studies in a single based meta-analysis according only to the modality conveying experimental stimuli (auditory or tactile).

Our approach revealed a specific functional cortical segregation according to the sensory modality conveying the non-visual information, irrespectively from the cognitive features of the tasks. In particular, dorsal and posterior subregions of occipital and superior parietal cortex showed a higher cross-modal recruitment across tactile tasks in blind as compared to sighted individuals. On the other hand, auditory stimuli activated more medial and ventral clusters within early visual areas, the lingual and inferior temporal cortex. These findings suggest a modality-specific functional modification of cross-modal responses within different portions of the occipital cortex of blind individuals. Cross-modal recruitment can thus be specifically influenced by the intrinsic features of sensory information.

Sections
References
  • AmediA.MerabetL. B.BermpohlF.Pascual-LeoneA. (2005). The occipital cortex in the blind lessons about plasticity and visionCurr. Dir. Psychol. Sci. 14306311.

    • Search Google Scholar
    • Export Citation
  • AmediA.SternW. M.CamprodonJ. A.BermpohlF.MerabetL. B.RotmanS.HemondC.MeijerP.Pascual-LeoneA. (2007). Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complexNat. Neurosci. 10687689.

    • Search Google Scholar
    • Export Citation
  • AnurovaI.RenierL.De VolderA. G.CarlsonS.RauscheckerJ. P. (in press). Relationship between cortical thickness and functional activation in the early blindCereb. Cortex. DOI:10.1093/cercor/bhu009

    • Search Google Scholar
    • Export Citation
  • BüchelC.PriceC.FristonK. (1998). A multimodal language region in the ventral visual pathwayNature 394274277.

  • BurtonH.SinclairR. J.DixitS. (2010). Working memory for vibrotactile frequencies: comparison of cortical activity in blind and sighted individualsHum. Brain Mapp. 3116861701.

    • Search Google Scholar
    • Export Citation
  • ChabotN.CharbonneauV.LaraméeM.-E.TremblayR.BoireD.BronchtiG. (2008). Subcortical auditory input to the primary visual cortex in anophthalmic miceNeurosci. Lett. 433129134.

    • Search Google Scholar
    • Export Citation
  • CohenL. G.CelnikP.Pascual-LeoneA.CorwellA.FalzL.DambrosiaJ.HondaM.SadatoN.GerloffC.CatalàM. D.HallettM. (1997). Functional relevance of cross-modal plasticity in blind humansNature 389180183.

    • Search Google Scholar
    • Export Citation
  • CollignonO.DavareM.OlivierE.De VolderA. G. (2009). Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation studyBrain Topogr. 21232240.

    • Search Google Scholar
    • Export Citation
  • CollignonO.DormalG.AlbouyG.VandewalleG.VossP.PhillipsC.LeporeF. (2013). Impact of blindness onset on the functional organization and the connectivity of the occipital cortexBrain 13627692783.

    • Search Google Scholar
    • Export Citation
  • CollignonO.VandewalleG.VossP.AlbouyG.CharbonneauG.LassondeM.LeporeF. (2011). Functional specialization for auditory–spatial processing in the occipital cortex of congenitally blind humansProc. Natl Acad. Sci. USA 10844354440.

    • Search Google Scholar
    • Export Citation
  • De VolderA. G.ToyamaH.KimuraY.KiyosawaM.NakanoH.VanlierdeA.Wanet- DefalqueM.-C.MishinaM.OdaK.IishiwataK. (2001). Auditory triggered mental imagery of shape involves visual association areas in early blind humansNeuroImage 14129139.

    • Search Google Scholar
    • Export Citation
  • DesgentS.PtitoM. (2012). Cortical GABAergic interneurons in cross-modal plasticity following early blindnessNeural Plast. 2012590725.

    • Search Google Scholar
    • Export Citation
  • EickhoffS. B.AmuntsK.MohlbergH.ZillesK. (2006). The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging resultsCereb. Cortex 16268279.

    • Search Google Scholar
    • Export Citation
  • EickhoffS. B.BzdokD.LairdA. R.KurthF.FoxP. T. (2012). Activation likelihood estimation meta-analysis revisitedNeuroImage 5923492361.

    • Search Google Scholar
    • Export Citation
  • EickhoffS. B.LairdA. R.GrefkesC.WangL. E.ZillesK.FoxP. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertaintyHum. Brain Mapp. 3029072926.

    • Search Google Scholar
    • Export Citation
  • FarrellM. J.LairdA. R.EganG. F. (2005). Brain activity associated with painfully hot stimuli applied to the upper limb: a meta-analysisHum. Brain Mapp. 25129139.

    • Search Google Scholar
    • Export Citation
  • FiehlerK.ReuschelJ.RöslerF. (2009). Early non-visual experience influences proprioceptive-spatial discrimination acuity in adulthoodNeuropsychologia 47897906.

    • Search Google Scholar
    • Export Citation
  • FishmanM. C.MichaelP. (1973). Integration of auditory information in the cat’s visual cortexVision Res. 814151419.

  • FrasnelliJ.CollignonO.VossP.LeporeF. (2011). Crossmodal plasticity in sensory lossProg. Brain Res. 191233249.

  • GougouxF.BelinP.VossP.LeporeF.LassondeM.ZatorreR. J. (2009). Voice perception in blind persons: a functional magnetic resonance imaging studyNeuropsychologia 4729672974.

    • Search Google Scholar
    • Export Citation
  • GougouxF.ZatorreR. J.LassondeM.VossP.LeporeF. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individualsPLoS Biol. 3e27.

    • Search Google Scholar
    • Export Citation
  • InuiK.OkamotoH.MikiK.GunjiA.KakijiR. (2006). Serial and parallel processing in the human auditory cortex: a magnetoencephalographic studyCereb. Cortex 161830.

    • Search Google Scholar
    • Export Citation
  • IoannidesA. A.LiuL.PoghosyanY.SaridisG. A.GjeddeA.PtitoM.KupersR. (2013). MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subjectFront. Hum. Neurosci. 7429.

    • Search Google Scholar
    • Export Citation
  • KalberlahC.VillringerA.PlegerB. (2013). Dynamic causal modeling suggests serial processing of tactile vibratory stimuli in the human somatosensory cortex — an fMRI studyNeuroImage 74164171.

    • Search Google Scholar
    • Export Citation
  • KitadaR.OkamotoY.SasakiA. T.KochiyamaT.MiyaharaM.LedermanS. J.SadatoN. (2013). Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blindFront. Hum. Neurosci. 77.

    • Search Google Scholar
    • Export Citation
  • KlemenJ.ChambersC. D. (2012). Current perspectives and methods in studying neural mechanisms of multisensory interactionsNeurosci. Biobehav. Rev. 36111133.

    • Search Google Scholar
    • Export Citation
  • KlingeC.EippertF.RöderB.BüchelC. (2010). Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blindJ. Neurosci. 301279812805.

    • Search Google Scholar
    • Export Citation
  • KupersR.FumalA.De NoordhoutA. M.GjeddeA.SchoenenJ.PtitoM. (2006). Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjectsProc. Natl Acad. Sci. USA 1031325613260.

    • Search Google Scholar
    • Export Citation
  • KupersR.PietriniP.RicciardiE.PtitoM. (2011). The nature of consciousness in the visually deprived brainFront. Psychol. 219.

  • KupersR.PtitoM. (2011). Insights from darkness: what the study of blindness has taught us about brain structure and functionProg. Brain Res. 1921731.

    • Search Google Scholar
    • Export Citation
  • KupersR.PtitoM. (2013). Compensatory plasticity and cross-modal reorganization following early visual deprivationNeurosci. Biobehav. Rev. 413652.

    • Search Google Scholar
    • Export Citation
  • LeoA.BernardiG.HandjarasG.BoninoD.RicciardiE.PietriniP. (2012). Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individualsNeural Plast. 2012720278.

    • Search Google Scholar
    • Export Citation
  • LewisL. B.SaenzM.FineI. (2010). Mechanisms of cross-modal plasticity in early-blind subjectsJ. Neurophysiol. 10429953008.

  • MerabetL. B.Pascual-LeoneA. (2010). Neural reorganization following sensory loss: the opportunity of changeNat. Rev. Neurosci. 114452.

    • Search Google Scholar
    • Export Citation
  • MorrellF. (1972). Visual system’s view of acoustic spaceNature 2384446.

  • NoppeneyU. (2007). The effects of visual deprivation on functional and structural organization of the human brainNeurosci. Biobehav. Rev. 3111691180.

    • Search Google Scholar
    • Export Citation
  • NoppeneyU.FristonK. J.PriceC. J. (2003). Effects of visual deprivation on the organization of the semantic systemBrain 12616201627.

    • Search Google Scholar
    • Export Citation
  • Pascual-LeoneA.AmediA.FregniF.MerabetL. B. (2005). The plastic human brain cortexAnnu. Rev. Neurosci. 28377401.

  • Pascual-LeoneA.HamiltonR. (2001). The metamodal organization of the brainProg. Brain Res. 134427445.

  • Pascual-LeoneA.WalshV.RothwellJ. (2000). Transcranial magnetic stimulation in cognitive neuroscience — virtual lesion, chronometry, and functional connectivityCurr. Opin. Neurobiol. 10232237.

    • Search Google Scholar
    • Export Citation
  • PietriniP.FureyM. L.RicciardiE.GobbiniM. I.WuW.-H. C.CohenL.GuazzelliM.HaxbyJ. V. (2004). Beyond sensory images: object-based representation in the human ventral pathwayProc. Natl Acad. Sci. USA 10156585663.

    • Search Google Scholar
    • Export Citation
  • PoirierC.CollignonO.ScheiberC.RenierL.VanlierdeA.TranduyD.VeraartC.De VolderA. G. (2006). Auditory motion perception activates visual motion areas in early blind subjectsNeuroImage 31279285.

    • Search Google Scholar
    • Export Citation
  • PriceC. J.DevlinJ. T.MooreC. J.MortonC.LairdA. R. (2005). Meta-analyses of object naming: effect of baselineHum. Brain Mapp. 257082.

    • Search Google Scholar
    • Export Citation
  • PtitoM.FumalA.de NoordhoutA. M.SchoenenJ.GjeddeA.KupersR. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readersExp. Brain Res. 184193200.

    • Search Google Scholar
    • Export Citation
  • PtitoM.MatteauI.Zhi WangA.PaulsonO. B.SiebnerH. R.KupersR. (2012). Crossmodal recruitment of the ventral visual stream in congenital blindnessNeural Plast. 2012304045.

    • Search Google Scholar
    • Export Citation
  • PtitoM.MoesgaardS. M.GjeddeA.KupersR. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blindBrain 128606614.

    • Search Google Scholar
    • Export Citation
  • RazN.AmediA.ZoharyE. (2005). V1 activation in congenitally blind humans is associated with episodic retrievalCereb. Cortex 1514591468.

    • Search Google Scholar
    • Export Citation
  • RenierL. A.AnurovaI.De VolderA. G.CarlsonS.VanmeterJ.RauscheckerJ. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blindNeuron 68138148.

    • Search Google Scholar
    • Export Citation
  • RicciardiE.BoninoD.PellegriniS.PietriniP. (2013). Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neurosci. Biobehav. Rev. 416477.

    • Search Google Scholar
    • Export Citation
  • RicciardiE.PietriniP. (2011). New light from the dark: what blindness can teach us about brain functionCurr. Opin. Neurol. 24357363.

    • Search Google Scholar
    • Export Citation
  • RicciardiE.VanelloN.SaniL.GentiliC.ScilingoE. P.LandiniL.GuazzelliM.BicchiA.HaxbyJ. V.PietriniP. (2007). The effect of visual experience on the development of functional architecture in hMT+Cereb. Cortex 1729332939.

    • Search Google Scholar
    • Export Citation
  • SadatoN.Pascual-LeoneA.GrafmanJ.DeiberM.-P.IbanezV.HallettM. (1998). Neural networks for Braille reading by the blindBrain 12112131229.

    • Search Google Scholar
    • Export Citation
  • SadatoN.Pascual-LeoneA.GrafmanJ.IbanezV.DeiberM.-P.DoldG.HallettM. (1996). Activation of the primary visual cortex by Braille reading in blind subjectsNature 380526528.

    • Search Google Scholar
    • Export Citation
  • SaniL.RicciardiE.GentiliC.VanelloN.HaxbyJ. V.PietriniP. (2010). Effects of visual experience on the human MT+ functional connectivity networks: an fMRI study of motion perception in sighted and congenitally blind individualsFront. Syst. Neurosci. 4159.

    • Search Google Scholar
    • Export Citation
  • TurkeltaubP. E.EickhoffS. B.LairdA. R.FoxM.WienerM.FoxP. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analysesHum. Brain Mapp. 33113.

    • Search Google Scholar
    • Export Citation
  • VanlierdeA.De VolderA. G.Wanet-DefalqueM. C.VeraartC. (2003). Occipito-parietal cortex activation during visuo-spatial imagery in early blind humansNeuroImage 19698709.

    • Search Google Scholar
    • Export Citation
  • WagerT. D.JonidesJ.ReadingS. (2004). Neuroimaging studies of shifting attention: a meta-analysisNeuroImage 2216791693.

  • WagerT. D.SmithE. E. (2003). Neuroimaging studies of working memoryCogn. Affect. Behav. Neurosci. 3255274.

  • WatkinsK. E.ShakespeareT. J.O’DonoghueM. C.AlexanderI.RaggeN.CoweyA.BridgeH. (2013). Early auditory processing in area V5/MT+ of the congenitally blind brainJ. Neurosci. 331824218246.

    • Search Google Scholar
    • Export Citation
  • WeeksR.HorwitzB.Aziz-SultanA.TianB.WessingerC. M.CohenL. G.HallettM.RauscheckerJ. P. (2000). A positron emission tomographic study of auditory localization in the congenitally blindJ. Neurosci. 2026642672.

    • Search Google Scholar
    • Export Citation
  • WolbersT.ZahorikP.GiudiceN. A. (2011). Decoding the direction of auditory motion in blind humansNeuroImage 56681687.

Figures
  • View in gallery

    Clusters that showed significantly greater activations in blind as compared to sighted subjects across auditory (green) or tactile (orange) tasks. Cun: cuneus; IT: inferior temporal cortex; Ling: lingual gyrus; MO: middle occipital cortex; SP: superior parietal cortex.

Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 72 69 9
Full Text Views 139 139 1
PDF Downloads 8 8 0
EPUB Downloads 0 0 0