Modality Dependent Cross-Modal Functional Reorganization Following Congenital Visual Deprivation within Occipital Areas: A Meta-Analysis of Tactile and Auditory Studies

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Cross-modal responses in occipital areas appear to be essential for sensory processing in visually deprived subjects. However, it is yet unclear whether this functional recruitment might be dependent on the sensory channel conveying the information. In order to characterize brain areas showing task-independent, but sensory specific, cross-modal responses in blind individuals, we pooled together distinct brain functional studies in a single based meta-analysis according only to the modality conveying experimental stimuli (auditory or tactile).

Our approach revealed a specific functional cortical segregation according to the sensory modality conveying the non-visual information, irrespectively from the cognitive features of the tasks. In particular, dorsal and posterior subregions of occipital and superior parietal cortex showed a higher cross-modal recruitment across tactile tasks in blind as compared to sighted individuals. On the other hand, auditory stimuli activated more medial and ventral clusters within early visual areas, the lingual and inferior temporal cortex. These findings suggest a modality-specific functional modification of cross-modal responses within different portions of the occipital cortex of blind individuals. Cross-modal recruitment can thus be specifically influenced by the intrinsic features of sensory information.

Modality Dependent Cross-Modal Functional Reorganization Following Congenital Visual Deprivation within Occipital Areas: A Meta-Analysis of Tactile and Auditory Studies

in Multisensory Research

Sections

References

AmediA.MerabetL. B.BermpohlF.Pascual-LeoneA. (2005). The occipital cortex in the blind lessons about plasticity and visionCurr. Dir. Psychol. Sci. 14306311.

AmediA.SternW. M.CamprodonJ. A.BermpohlF.MerabetL. B.RotmanS.HemondC.MeijerP.Pascual-LeoneA. (2007). Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complexNat. Neurosci. 10687689.

AnurovaI.RenierL.De VolderA. G.CarlsonS.RauscheckerJ. P. (in press). Relationship between cortical thickness and functional activation in the early blindCereb. Cortex. DOI:10.1093/cercor/bhu009

BüchelC.PriceC.FristonK. (1998). A multimodal language region in the ventral visual pathwayNature 394274277.

BurtonH.SinclairR. J.DixitS. (2010). Working memory for vibrotactile frequencies: comparison of cortical activity in blind and sighted individualsHum. Brain Mapp. 3116861701.

ChabotN.CharbonneauV.LaraméeM.-E.TremblayR.BoireD.BronchtiG. (2008). Subcortical auditory input to the primary visual cortex in anophthalmic miceNeurosci. Lett. 433129134.

CohenL. G.CelnikP.Pascual-LeoneA.CorwellA.FalzL.DambrosiaJ.HondaM.SadatoN.GerloffC.CatalàM. D.HallettM. (1997). Functional relevance of cross-modal plasticity in blind humansNature 389180183.

CollignonO.DavareM.OlivierE.De VolderA. G. (2009). Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation studyBrain Topogr. 21232240.

CollignonO.DormalG.AlbouyG.VandewalleG.VossP.PhillipsC.LeporeF. (2013). Impact of blindness onset on the functional organization and the connectivity of the occipital cortexBrain 13627692783.

CollignonO.VandewalleG.VossP.AlbouyG.CharbonneauG.LassondeM.LeporeF. (2011). Functional specialization for auditory–spatial processing in the occipital cortex of congenitally blind humansProc. Natl Acad. Sci. USA 10844354440.

De VolderA. G.ToyamaH.KimuraY.KiyosawaM.NakanoH.VanlierdeA.Wanet- DefalqueM.-C.MishinaM.OdaK.IishiwataK. (2001). Auditory triggered mental imagery of shape involves visual association areas in early blind humansNeuroImage 14129139.

DesgentS.PtitoM. (2012). Cortical GABAergic interneurons in cross-modal plasticity following early blindnessNeural Plast. 2012590725.

EickhoffS. B.AmuntsK.MohlbergH.ZillesK. (2006). The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging resultsCereb. Cortex 16268279.

EickhoffS. B.BzdokD.LairdA. R.KurthF.FoxP. T. (2012). Activation likelihood estimation meta-analysis revisitedNeuroImage 5923492361.

EickhoffS. B.LairdA. R.GrefkesC.WangL. E.ZillesK.FoxP. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertaintyHum. Brain Mapp. 3029072926.

FarrellM. J.LairdA. R.EganG. F. (2005). Brain activity associated with painfully hot stimuli applied to the upper limb: a meta-analysisHum. Brain Mapp. 25129139.

FiehlerK.ReuschelJ.RöslerF. (2009). Early non-visual experience influences proprioceptive-spatial discrimination acuity in adulthoodNeuropsychologia 47897906.

FishmanM. C.MichaelP. (1973). Integration of auditory information in the cat’s visual cortexVision Res. 814151419.

FrasnelliJ.CollignonO.VossP.LeporeF. (2011). Crossmodal plasticity in sensory lossProg. Brain Res. 191233249.

GougouxF.BelinP.VossP.LeporeF.LassondeM.ZatorreR. J. (2009). Voice perception in blind persons: a functional magnetic resonance imaging studyNeuropsychologia 4729672974.

GougouxF.ZatorreR. J.LassondeM.VossP.LeporeF. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individualsPLoS Biol. 3e27.

InuiK.OkamotoH.MikiK.GunjiA.KakijiR. (2006). Serial and parallel processing in the human auditory cortex: a magnetoencephalographic studyCereb. Cortex 161830.

IoannidesA. A.LiuL.PoghosyanY.SaridisG. A.GjeddeA.PtitoM.KupersR. (2013). MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subjectFront. Hum. Neurosci. 7429.

KalberlahC.VillringerA.PlegerB. (2013). Dynamic causal modeling suggests serial processing of tactile vibratory stimuli in the human somatosensory cortex — an fMRI studyNeuroImage 74164171.

KitadaR.OkamotoY.SasakiA. T.KochiyamaT.MiyaharaM.LedermanS. J.SadatoN. (2013). Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blindFront. Hum. Neurosci. 77.

KlemenJ.ChambersC. D. (2012). Current perspectives and methods in studying neural mechanisms of multisensory interactionsNeurosci. Biobehav. Rev. 36111133.

KlingeC.EippertF.RöderB.BüchelC. (2010). Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blindJ. Neurosci. 301279812805.

KupersR.FumalA.De NoordhoutA. M.GjeddeA.SchoenenJ.PtitoM. (2006). Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjectsProc. Natl Acad. Sci. USA 1031325613260.

KupersR.PietriniP.RicciardiE.PtitoM. (2011). The nature of consciousness in the visually deprived brainFront. Psychol. 219.

KupersR.PtitoM. (2011). Insights from darkness: what the study of blindness has taught us about brain structure and functionProg. Brain Res. 1921731.

KupersR.PtitoM. (2013). Compensatory plasticity and cross-modal reorganization following early visual deprivationNeurosci. Biobehav. Rev. 413652.

LeoA.BernardiG.HandjarasG.BoninoD.RicciardiE.PietriniP. (2012). Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individualsNeural Plast. 2012720278.

LewisL. B.SaenzM.FineI. (2010). Mechanisms of cross-modal plasticity in early-blind subjectsJ. Neurophysiol. 10429953008.

MerabetL. B.Pascual-LeoneA. (2010). Neural reorganization following sensory loss: the opportunity of changeNat. Rev. Neurosci. 114452.

MorrellF. (1972). Visual system’s view of acoustic spaceNature 2384446.

NoppeneyU. (2007). The effects of visual deprivation on functional and structural organization of the human brainNeurosci. Biobehav. Rev. 3111691180.

NoppeneyU.FristonK. J.PriceC. J. (2003). Effects of visual deprivation on the organization of the semantic systemBrain 12616201627.

Pascual-LeoneA.AmediA.FregniF.MerabetL. B. (2005). The plastic human brain cortexAnnu. Rev. Neurosci. 28377401.

Pascual-LeoneA.HamiltonR. (2001). The metamodal organization of the brainProg. Brain Res. 134427445.

Pascual-LeoneA.WalshV.RothwellJ. (2000). Transcranial magnetic stimulation in cognitive neuroscience — virtual lesion, chronometry, and functional connectivityCurr. Opin. Neurobiol. 10232237.

PietriniP.FureyM. L.RicciardiE.GobbiniM. I.WuW.-H. C.CohenL.GuazzelliM.HaxbyJ. V. (2004). Beyond sensory images: object-based representation in the human ventral pathwayProc. Natl Acad. Sci. USA 10156585663.

PoirierC.CollignonO.ScheiberC.RenierL.VanlierdeA.TranduyD.VeraartC.De VolderA. G. (2006). Auditory motion perception activates visual motion areas in early blind subjectsNeuroImage 31279285.

PriceC. J.DevlinJ. T.MooreC. J.MortonC.LairdA. R. (2005). Meta-analyses of object naming: effect of baselineHum. Brain Mapp. 257082.

PtitoM.FumalA.de NoordhoutA. M.SchoenenJ.GjeddeA.KupersR. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readersExp. Brain Res. 184193200.

PtitoM.MatteauI.Zhi WangA.PaulsonO. B.SiebnerH. R.KupersR. (2012). Crossmodal recruitment of the ventral visual stream in congenital blindnessNeural Plast. 2012304045.

PtitoM.MoesgaardS. M.GjeddeA.KupersR. (2005). Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blindBrain 128606614.

RazN.AmediA.ZoharyE. (2005). V1 activation in congenitally blind humans is associated with episodic retrievalCereb. Cortex 1514591468.

RenierL. A.AnurovaI.De VolderA. G.CarlsonS.VanmeterJ.RauscheckerJ. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blindNeuron 68138148.

RicciardiE.BoninoD.PellegriniS.PietriniP. (2013). Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neurosci. Biobehav. Rev. 416477.

RicciardiE.PietriniP. (2011). New light from the dark: what blindness can teach us about brain functionCurr. Opin. Neurol. 24357363.

RicciardiE.VanelloN.SaniL.GentiliC.ScilingoE. P.LandiniL.GuazzelliM.BicchiA.HaxbyJ. V.PietriniP. (2007). The effect of visual experience on the development of functional architecture in hMT+Cereb. Cortex 1729332939.

SadatoN.Pascual-LeoneA.GrafmanJ.DeiberM.-P.IbanezV.HallettM. (1998). Neural networks for Braille reading by the blindBrain 12112131229.

SadatoN.Pascual-LeoneA.GrafmanJ.IbanezV.DeiberM.-P.DoldG.HallettM. (1996). Activation of the primary visual cortex by Braille reading in blind subjectsNature 380526528.

SaniL.RicciardiE.GentiliC.VanelloN.HaxbyJ. V.PietriniP. (2010). Effects of visual experience on the human MT+ functional connectivity networks: an fMRI study of motion perception in sighted and congenitally blind individualsFront. Syst. Neurosci. 4159.

TurkeltaubP. E.EickhoffS. B.LairdA. R.FoxM.WienerM.FoxP. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analysesHum. Brain Mapp. 33113.

VanlierdeA.De VolderA. G.Wanet-DefalqueM. C.VeraartC. (2003). Occipito-parietal cortex activation during visuo-spatial imagery in early blind humansNeuroImage 19698709.

WagerT. D.JonidesJ.ReadingS. (2004). Neuroimaging studies of shifting attention: a meta-analysisNeuroImage 2216791693.

WagerT. D.SmithE. E. (2003). Neuroimaging studies of working memoryCogn. Affect. Behav. Neurosci. 3255274.

WatkinsK. E.ShakespeareT. J.O’DonoghueM. C.AlexanderI.RaggeN.CoweyA.BridgeH. (2013). Early auditory processing in area V5/MT+ of the congenitally blind brainJ. Neurosci. 331824218246.

WeeksR.HorwitzB.Aziz-SultanA.TianB.WessingerC. M.CohenL. G.HallettM.RauscheckerJ. P. (2000). A positron emission tomographic study of auditory localization in the congenitally blindJ. Neurosci. 2026642672.

WolbersT.ZahorikP.GiudiceN. A. (2011). Decoding the direction of auditory motion in blind humansNeuroImage 56681687.

Figures

  • View in gallery

    Clusters that showed significantly greater activations in blind as compared to sighted subjects across auditory (green) or tactile (orange) tasks. Cun: cuneus; IT: inferior temporal cortex; Ling: lingual gyrus; MO: middle occipital cortex; SP: superior parietal cortex.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 19 19 7
Full Text Views 75 75 56
PDF Downloads 6 6 3
EPUB Downloads 0 0 0