The Process of Distal Attribution Illuminated Through Studies of Sensory Substitution

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


When we interact with objects in our environment, as a general rule we are not aware of the proximal stimulation they provide, but we directly experience the external object. This process of assigning an external cause is known as distal attribution. It is extremely difficult to measure how distal attribution emerges because it arises so early in life and appears to be automatic. Sensory substitution systems give us the possibility to measure the process as it occurs online. With these devices, objects in our environment produce novel proximal stimulation patterns and individuals have to establish the link between the proximal stimulation and the distal object. This review disentangles the contributing factors that allow the nervous system to assign a distal cause, thereby creating the experience of an external world. In particular, it highlights the role of the assumption of a stable world, the role of movement, and finally that of calibration. From the existing sensory substitution literature it appears that distal attribution breaks down when one of these principles is violated and as such the review provides an important piece to the puzzle of distal attribution.

Multisensory Research

A Journal of Scientific Research on All Aspects of Multisensory Processing



AuvrayM.HannetonS.LenayC.O’ReganJ. K. (2005). There is something out there: distal attribution in sensory substitution twenty years later, J. Integr. Neurosci. 4, 505521.

AuvrayM.HannetonS.O’ReganJ. K. (2007). Learning to perceive with a visuo-auditory substitution system: localisation and object recognition with ‘The vOICe’, Perception 36, 416430.

AuvrayM.MyinE. (2009). Perception with compensatory devices: from sensory substitution to sensory motor extension, Cogn. Sci. 33, 10361958.

Bach-y-RitaP. (1972). Brain Mechanisms in Sensory Substitution. Academic Press, London, UK, and New York, NY, USA.

Bach-y-RitaP. (2002). Sensory substitution and qualia, in: Vision and Mind, NoëA.ThompsonE. (Eds), pp.  497514. MIT Press, Cambridge, MA, USA.

Bach-y-RitaP.CollinsC. C.SaundersF.WhiteB.ScaddenL. (1969). Vision substitution by tactile image projection, Nature 221, 963964.

BerganJ. F.KnudsenE. I. (2009). Visual modulation of auditory responses in the owl inferior colliculus, J. Neurophysiol. 101, 29242933.

BowerT. G. R. (1964). Discrimination of depth in premotor infants, Psychonom. Sci. 1, 368.

BowerT. G. R. (1965). Stimulus variables determining space perception in infants, Science 149, 8889.

BowerT. G. R. (1966a). Slant perception and shape constancy in infants, Science 151, 832834.

BowerT. G. R. (1966b). The visual world of infants, Sci. Am. 215, 8092.

BubicA.Striem-AmitE.AmediA. (2010). Large-scale brain plasticity following blindness and the use of sensory substitution devices, in: Multisensory Object Perception in the Primate Brain, NaumerM. J.KaiserJ. (Eds), pp.  351380. Springer, New York, NY, USA.

CaronA. J.CaronR. F.CarlsonV. R. (1978). Do infants see objects or retinal images? Shape constancy revisited, Infant Behavior and Development 1, 229243.

CondillacE. B. (1754). Traité des Sensations [Treatise of Sensations]. Reissued in the series Corpus des Œuvres de Philosophie en Langue Francaise. Fayard, Paris, France, 1984.

CrickF.KochC. (1995). Are we aware of neural activity in primary visual cortex? Nature 375, 121123.

DeroyO.AuvrayM. (2012). Reading the world through the skin and ears: a new perspective on sensory substitution, Front. Theor. Phil. Psychol. 3, 457.

DonaldsonI. (2000). The functions of the proprioceptors of the eye muscles, Phil. Trans. R. Soc. B Biol. Sci. 335, 16851754.

EpsteinW.HughesB.SchneiderS.Bach-y-RitaP. (1986). Is there anything out there? A study of distal attribution in response to vibrotactile stimulation, Perception 15, 275284.

ErnstM. O. (2008). Multisensory integration: a late bloomer, Curr. Biol. 18, R519R521.

GibsonJ. J. (1962). Observations on active touch, Psychol. Rev. 69, 477490.

GlennersterA.TcheangL.GilsonS. J.FitzgibbonA. W.ParkerA. J. (2006). Humans ignore motion and stereo cues in favor of a fictional stable world, Curr. Biol. 16, 428432.

GoldJ. I.KnudsenE. I. (2000). Abnormal auditory experience induces frequency-specific adjustments in unit tuning for binaural localization cues in the optic tectum of juvenile owls, J. Neurosci. 20, 862877.

GoriM.SandiniG.MartinoliC.BurrD. (2010). Poor haptic orientation discrimination in nonsighted children may reflect disruption of cross-sensory calibration, Curr. Biol. 20, 223225.

GoriM.SciuttiA.BurrD.SandiniG. (2011). Direct and indirect haptic calibration of visual size judgments, PLoS ONE 6, e25599.

GrahamN. (1989). Visual Pattern Analyzers. Oxford University Press, New York, NY, USA.

GrazianoM. S.ReissL. A.GrossC. G. (1999). A neuronal representation of the location of nearby sounds, Nature 397, 428430.

GregoryR. L. (1963). Distortions of visual space as inappropriate constancy scaling, Nature 199, 678680.

GuarnieroG. (1974). Experience of tactile vision, Perception 3, 101104.

HallettP. E.LightstoneA. D. (1976). Saccadic eye movements towards stimuli triggered by prior saccades, Vis. Res. 16, 99106.

HannetonS.AuvrayM.DuretteB. (2010). The Vibe: a versatile vision-to-audition sensory substitution device, Appl. Bionics Biomech. 7, 269276.

HaynesH.WhiteB. L.HeldR. (1965). Visual accommodation in human infants, Science 148, 528530.

HaywardV. (2011). Is there a ‘plenhaptic’ function? Phil. Trans. R. Soc. B Biol. Sci. 366, 31153122.

HoY. X.SerweS.TrommershauserJ.MaloneyL. T.LandyM. S. (2009). The role of visuohaptic experience in visually perceived depth, J. Neurophysiol. 101, 27892801.

HurleyS.NoëA. (2003). Neural plasticity and consciousness, Biol. Philos. 18, 131168.

KatzD. (1925). The World of Touch. Erlbaum, Hillsdale, NJ, USA (translation published 1989, translated by L. E. Kmeger).

KingA. J.HutchingsM. E.MooreD. R.BlakemoreC. (1988). Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus, Nature 332, 7376.

KingA. J.MooreD. R. (1991). Plasticity of auditory maps in the brain, Trends Neurosci. 14, 3137.

KingA. J.ParsonsC. H. (1999). Improved auditory spatial acuity in visually deprived ferrets, Eur. J. Neurosci. 11, 39453956.

KingA. J.SchnuppJ. W.DoubellT. P. (2001). The shape of ears to come: dynamic coding of auditory space, Trends Cogn. Sci. 5, 261270.

KnapenT.RolfsM.WexlerM.CavanaghP. (2010). The reference frame of the tilt aftereffect, J. Vis. 10, 113.

KnillD. C. (2007). Learning Bayesian priors for depth perception, J. Vis. 7, 120.

KnudsenE. I. (1999). Mechanisms of experience-dependent plasticity in the auditory localization pathway of the barn owl, J. Comp. Physiol. 185, 305321.

KoenderinkJ. J.van DoornA. J.KappersA. M. L.ToddJ. T. (2001). Ambiguity and the “mental eye” in pictorial relief, Perception 30, 431448.

KruegerL. E. (1970). David Katz’s Der Aufbau der Tastwelt (The World of Touch): a synopsis, Atten. Percept. Psychophys. 7, 337341.

LeeJ.GrohJ. M. (2009). Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus, J. Neurophysiol. 108, 227242.

LenayC.GapenneO.HannetonS.MarqueC.GenouëlleC. (2003). Sensory substitution: limits and perspectives, in: Touching for Knowing, HatwellY.StreriA.GentazE. (Eds), pp.  275292. John Benjamins, Amsterdam, The Nertherlands.

Levy-TzedekS.HanassyS.AbboudS.MaidenbaumS.AmediA. (2012). Fast, accurate reaching movements with a visual-to-auditory sensory substitution device, Restor. Neurol. Neurosci. 30, 313323.

LewisJ. E.MalerL. (2001). Neuronal population codes and the perception of object distance in weakly electric fish, J. Neurosci. 21, 28422850.

LoomisJ. M. (1992). Distal attribution and presence, Presence 1, 113119.

LoomisJ. M.KlatzkyR. L.GiudiceN. A. (2012). Sensory substitution of vision: importance of perceptual and cognitive processing, in: Assistive Technology for Blindness and Low Vision, ManduchiR.KurniawanS. (Eds), pp.  162191. CRC Press, Boca Raton, FL, USA.

ManciniF.HaggardP. (2014). Perception: a motion after-effect for voluntary actions, Curr. Biol. 24, R70R72.

Merleau-PontyM. (1945). Phénoménologie de la Perception. Gallimard, Paris, France.

Mon-WilliamsM.BinghamG. P. (2007). Calibrating reach distance to visual targets, J. Exp. Psychol. Hum. Percept. Perform. 33, 645656.

MooreD. R.KingA. J. (1999). Auditory perception: the near and far of sound localization, Curr. Biol. 9, R361R363.

O’ReganJ. K. (1992). Solving the “real” mysteries of visual perception: the world as an outside memory, Can. J. Psychol. 46, 461488.

O’ReganJ. K.NoëA. (2001). A sensorimotor account of vision and visual consciousness, Behav. Brain Sci. 24, 939973.

PoggioG. F.FisherB. (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkeys, J. Neurophysiol. 40, 13921405.

PoincaréH. (1905). La Valeur de la Science [The Value of Science]. Flammarion, Paris, France.

PolettiM.BurrD. C.RucciM. (2013). Optimal multimodal integration in spatial localization, J. Neurosci. 33, 1425914268.

RigatoS.Begum AliJ.van VelzenJ.BremnerA. J. (2014). The neural basis of somatosensory remapping develops in human infancy, Curr. Biol. 24, 12221226.

SegondH.WeissD.SampaioE. (2005). Human spatial navigation via a visuo-tactile sensory substitution system, Perception 34, 12311249.

SherringtonC. S. (1918). Observation on the sensual role of the proprioceptive nerve supply of the extrinsic ocular muscles, Brain 41, 332343.

Shinn-CunninghamB. G. (2001). Localizing sound in rooms, in: Proceedings of the ACM/SIGGRAPH and Eurographics Campfire: Acoustic Rendering for Virtual Environments. Snowbird, UT, USA.

ShuwairiS. M.AlbertM. K.JohnsonS. P. (2007). Discrimination of possible and impossible objects in infancy, Psychol. Sci. 18, 303307.

SiegleJ. H.WarrenW. (2010). Distal attribution and distance perception in sensory substitution, Perception 39, 208223.

SmetsG. J. F.OverbeekeC. J.StrathmanM. H. (1987). Depth on a flat screen, Percept. Mot. Skills 64, 10231034.

TerekhovA.O’ReganJ. K. (2013). Space as an invention of biological organisms.

von BékésyG. (1955). Human skin perception of traveling waves similar to those on the cochlea, J. Acoust. Soc. Am. 27, 830841. [Reprinted in: G. von Békésy (1960). Experiments in Hearing, E. G. Wever (Ed. and Trans.), pp. 547–634. McGraw-Hill, New York, NY, USA.]

von HelmholtzH. (1909). Physiological Optics. Optical Society of America, Rochester, NY, USA.

von HelmholtzH. (1925). Treatise on Physiological Optics. Dover, New York, NY, USA.

WallaceM. T.MeredithM. A.SteinB. E. (1998). Multisensory integration in the superior colliculus of the alert cat, J. Neurophysiol. 80, 10061010.

WhiteB. W. (1970). Perceptual findings with the vision-substitution system, IEEE Trans. Man–Mach. Syst. 11, 5458.

WhiteB. W.SaundersF. A.ScaddenL.Bach-y-RitaP.CollinsC. C. (1970). Seeing with the skin, Percept. Psychophys. 7, 2327.

WurtzR. H. (2008). Neuronal mechanisms of visual stability, Vis. Res. 48, 20702089.

ZwiersM. P.Van OpstalA. J.CruysbergJ. R. M. (2001). Two-dimensional sound-localization behavior of early-blind humans, Exp. Brain Res. 140, 206222.

ZwiersM. P.Van OpstalA. J.PaigeG. D. (2003). Plasticity in human sound localization induced by compressed spatial vision, Nat. Neurosci. 6, 175181.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 6 6 5
Full Text Views 9 9 9
PDF Downloads 0 0 0
EPUB Downloads 0 0 0