Task-Specific, Age Related Effects in the Cross-Modal Identification and Localisation of Objects

in Multisensory Research
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


We investigated age-related effects in cross-modal interactions using tasks assessing spatial perception and object perception. Specifically, an audio-visual object identification task and an audio-visual object localisation task were used to assess putatively distinct perceptual functions in four age groups: children (8–11 years), adolescents (12–14 years), young and older adults. Participants were required to either identify or locate target objects. Targets were specified as unisensory (visual/auditory) or multisensory (audio-visual congruent/audio-visual incongruent) stimuli. We found age-related effects in performance across both tasks. Both children and older adults were less accurate at locating objects than adolescents or young adults. Children were also less accurate at identifying objects relative to young adults, but the performance between young adults, adolescents and older adults did not differ. A greater cost in accuracy for audio-visual incongruent relative to audio-visual congruent targets was found for older adults, children and adolescents relative to young adults. However, we failed to find a benefit in performance for any age group in either the identification or localisation task for audio-visual congruent targets relative to visual-only targets. Our findings suggest that visual information dominated when identifying or localising audio-visual stimuli. Furthermore, on the basis of our results, object identification and object localisation abilities seem to mature late in development and that spatial abilities may be more prone to decline as we age relative to object identification abilities. In addition, the results suggest that multisensory facilitation may require more sensitive measures to reveal differences in cross-modal interactions across higher-level perceptual tasks.

Task-Specific, Age Related Effects in the Cross-Modal Identification and Localisation of Objects

in Multisensory Research



AhveninenJ.JääskeläinenI. P.RaijT.BonmassarG.DevoreS.HämäläinenM.BelliveauJ. W. (2006). Task-modulated “what” and “where” pathways in human auditory cortexProc. Natl Acad. Sci. USA 1031460814613.

AlainC.ArnottS. R.HevenorS.GrahamS.GradyC. L. (2001). “What” and “where” in the human auditory systemProc. Natl Acad. Sci. USA 981230112306.

AlaisD.BurrD. (2004). The ventriloquist effect results from near-optimal bimodal integrationCurr. Biol. 14257262.

AlsiusA.NavarraJ.CampbellR.Soto-FaracoS. (2005). Audiovisual integration of speech falters under high attention demandsCurr. Biol. 15839843.

AndrésP.ParmentierF. B. R.EsceraC. (2006). The effect of age on involuntary capture of attention by irrelevant sounds: a test of the frontal hypothesis of agingNeuropsychologia 4425642568.

AtkinsonJ. (1992). Early visual development: differential functioning of parvocellular and magnocellular pathwaysEye 6129135.

AtkinsonJ. (1998). The “where and what” or “who and how” of visual development in: The Development of Sensory Motor and Cognitive Capacities in Early Infancy: From Perception to CognitionSimionF. (Ed.) pp.  324. Psychology Press/Erlbaum, Taylor and FrancisUK.

BahrickL. E.LickliterR. (2000). Intersensory redundancy guides attentional selectivity and perceptual learning in infancyDev. Psychol. 36190201.

BaileyI. L.LovieJ. E. (1980). The design and use of a new near-vision chartAm. J. Optom. Physiol. Opt. 57378387.

BarutchuA.CrewtherD. P.CrewtherS. G. (2009). The race that precedes coactivation: development of multisensory facilitation in childrenDev. Sci. 12464473.

BarutchuA.DanaherJ.CrewtherS. G.Innes-BrownH.ShivdasaniM. N.PaoliniA. G. (2010). Audiovisual integration in noise by children and adultsJ. Exp. Child Psychol. 1053850.

BraddickO.AtkinsonJ. (2011). Development of human visual functionVision Res. 5115881609.

BraddickO.AtkinsonJ.Wattam-BellJ. (2003). Normal and anomalous development of visual motion processing: motion coherence and “dorsal-stream vulnerability”Neuropsychologia 4117691784.

BraddickO. J.O’BrienJ. M.Wattam-BellJ.AtkinsonJ.TurnerR. (2000). Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brainCurr. Biol. 10731734.

BrandweinA. B.FoxeJ. J.RussoN. N.AltschulerT. S.GomesH.MolholmS. (2010). The development of audiovisual multisensory integration across childhood and early adolescence: a high-density electrical mapping studyCereb. Cortex 2110421055.

BrookesH.SlaterA.QuinnP. C.LewkowiczD. J.HayesR.BrownE. (2001). Three-month-old infants learn arbitrary auditory–visual pairings between voices and facesInfant Child Dev. 107582.

CalvertG.SpenceC.SteinB. E. (2004). The Handbook of Multisensory Processes. MIT PressLondon, UK.

CaseyB. J.GieddJ. N.ThomasK. M. (2000). Structural and functional brain development and its relation to cognitive developmentBiol. Psychol. 54241257.

CaseyB. J.TottenhamN.ListonC.DurstonS. (2005). Imaging the developing brain: what have we learned about cognitive development? Trends Cogn. Sci. 9104110.

ChanJ. S.NewellF. N. (2008). Behavioral evidence for task-dependent “what” versus “where” processing within and across modalitiesPercept. Psychophys. 703649.

ChenJ.MyersonJ.HaleS. (2002). Age-related dedifferentiation of visuospatial abilitiesNeuropsychologia 4020502056.

ChenY.-C.SpenceC. (2010). When hearing the bark helps to identify the dog: semantically-congruent sounds modulate the identification of masked picturesCognition 114389404.

ChenY.-C.SpenceC. (2011). Crossmodal semantic priming by naturalistic sounds and spoken words enhances visual sensitivityJ. Exp. Psychol. Hum. Percept. Perform. 3715541568.

ClarkeS.Bellmann ThiranA.MaederP.AdrianiM.VernetO.RegliL.CuisenaireO.ThiranJ.-P. (2002). What and where in human audition: selective deficits following focal hemispheric lesionsExp. Brain Res. 147815.

CloutmanL. L. (2013). Interaction between dorsal and ventral processing streams: where, when and how? Brain Lang. 127251263.

CoenR. F.CahillR.LawlorB. A. (2011). Things to watch out for when using the Montreal cognitive assessment (MoCA)Int. J. Geriatr. Psychiatry 26107108.

ColoniusH.DiederichA. (2006). The race model inequality: interpreting a geometric measure of the amount of violationPsychol. Rev. 113148154.

ConnellyS. L.HasherL. (1993). Aging and the inhibition of spatial locationJ. Exp. Psychol. Hum. Percept. Perform. 1912381250.

CycowiczY. M.FriedmanD.RothsteinM.SnodgrassJ. G. (1997). Picture naming by young children: norms for name agreement, familiarity, and visual complexityJ. Exp. Child Psychol. 65171237.

DesimoneR.UngerleiderL. G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaqueJ. Comp. Neurol. 248164189.

DiaconescuA. O.HasherL.McIntoshA. R. (2013). Visual dominance and multisensory integration changes with ageNeuroimage 65152166.

DiederichA.ColoniusH.SchomburgA. (2008). Assessing age-related multisensory enhancement with the time-window-of-integration modelNeuropsychologia 4625562562.

DijkermanH. C.De HaanE. H. F. (2007). Somatosensory processes subserving perception and actionBehav. Brain Sci. 30189239.

DoehrmannO.NaumerM. J. (2008). Semantics and the multisensory brain: how meaning modulates processes of audio-visual integrationBrain Res. 1242136150.

DurstonS.ThomasK. M.YangY.UluǧA. M.ZimmermanR. D.CaseyB. J. (2002). A neural basis for the development of inhibitory controlDev. Sci. 5916.

ErnstM. O.BanksM. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashionNature 415(6870) 429433.

ErnstM. O.BülthoffH. H. (2004). Merging the senses into a robust perceptTrends Cogn. Sci. 8162169.

FabianiM.KazmerskiV. A.CycowiczY. M.FriedmanD. (1996). Naming norms for brief environmental sounds: effects of age and dementiaPsychophysiology 33462475.

FarivarR. (2009). Dorsal–ventral integration in object recognitionBrain Res. Rev. 61144153.

FetschC. R.PougetA.DeAngelisG. C.AngelakiD. E. (2012). Neural correlates of reliability-based cue weighting during multisensory integrationNat. Neurosci. 15146154.

FiebelkornI. C.FoxeJ. J.ButlerJ. S.MolholmS. (2011). Auditory facilitation of visual-target detection persists regardless of retinal eccentricity and despite wide audiovisual misalignmentsExp. Brain Res. 213167174.

FortA.DelpuechC.PernierJ.GiardM. H. (2002). Early auditory–visual interactions in human cortex during nonredundant target identificationCogn. Brain Res. 142030.

GathersA. D.BhattR.CorblyC. R.FarleyA. B.JosephJ. E. (2004). Developmental shifts in cortical loci for face and object recognitionNeuroreport 1515491553.

GieddJ. N.BlumenthalJ.JeffriesN. O.CastellanosF. X.LiuH.ZijdenbosA.PausT.EvansA. C.RapoportJ. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI studyNat. Neurosci. 2861863.

GirardS.PellandM.LeporeF.CollignonO. (2013). Impact of the spatial congruence of redundant targets on within-modal and cross-modal integrationExp. Brain Res. 224275285.

GogtayN.GieddJ. N.LuskL.HayashiK. M.GreensteinD.VaituzisA. C.NugentT. F.3rdHermanD. H.ClasenL. S.TogaA. W.RapoportJ. L.ThompsonP. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthoodProc. Natl Acad. Sci. USA 10181748179.

GondanM.NiederhausB.RöslerF.RöderB. (2005). Multisensory processing in the redundant-target effect: a behavioral and event-related potential studyPercept. Psychophys. 67713726.

GoodaleM. A.HumphreyG. K. (1998). The objects of action and perceptionCognition 67181207.

GoodaleM. A.MilnerA. D. (1992). Separate visual pathways for perception and actionTrends Neurosci. 152025.

GordonM. S.AllenS. (2009). Audiovisual speech in older and younger adults: integrating a distorted visual signal with speech in noiseExp. Aging Res. 35202219.

GoriM.Del VivaM.SandiniG.BurrD. C. (2008). Young children do not integrate visual and haptic form informationCurr. Biol. 18694698.

GoriM.SandiniG.BurrD. (2012). Development of visuo-auditory integration in space and timeFront. Integr. Neurosci. 677.

GradyC. L.HaxbyJ. V.HorwitzB.SchapiroM. B.RapoportS. I.UngerleiderL. G.MishkinM.CarsonR. E.HerscovitchP. (1992). Dissociation of object and spatial vision in human extrastriate cortex: age-related changes in activation of regional cerebral blood flow measured with [(15) O]water and positron emission tomographyJ. Cogn. Neurosci. 42334.

GradyC. L.MaisogJ. M.HorwitzB.UngerleiderL. G.MentisM. J.SalernoJ. A.PietriniP.WagnerE.HaxbyJ. V.HaxbyJ. V. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and locationJ. Neurosci. 1414501462.

GunnA.CoryE.AtkinsonJ.BraddickO.Wattam-BellJ.GuzzettaA.CioniG. (2002). Dorsal and ventral stream sensitivity in normal development and hemiplegiaNeuroreport 13843847.

HaxbyJ. V.GradyC. L.HorwitzB.UngerleiderL. G.MishkinM.CarsonR. E.HerscovitchP.SchapiroM. B.RapoportS. I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortexProc. Natl Acad. Sci. USA 8816211625.

HillockA. R.PowersA. R.WallaceM. T. (2011). Binding of sights and sounds: age-related changes in multisensory temporal processingNeuropsychologia 49461467.

HillyardS. A.Anllo-VentoL. (1998). Event-related brain potentials in the study of visual selective attentionProc. Natl Acad. Sci. USA 95781787.

HowardI. P.TempletonW. B. (1966). Human Spatial Orientation. John Wiley and SonsLondon, UK.

JohnsonA.ProctorR. W. (2004). Attention: Theory and Practice. Sage PublicationsThousand Oaks, CA, USA.

KieselA.MillerJ.UlrichR. (2007). Systematic biases and Type I error accumulation in tests of the race model inequalityBehav. Res. Methods 39539551.

KlaverP.MarcarV.MartinE. (2011). Neurodevelopment of the visual system in typically developing childrenProg. Brain Res. 189113136.

KovácsI. (2000). Human development of perceptual organizationVision Res. 4013011310.

KovácsI.KozmaP.FehérA.BenedekG. (1999). Late maturation of visual spatial integration in humansProc. Natl Acad. Sci. USA 961220412209.

LaurientiP. J.KraftR. A.MaldjianJ. A.BurdetteJ. H.WallaceM. T. (2004). Semantic congruence is a critical factor in multisensory behavioral performanceExp. Brain Res. 158405414.

LaurientiP. J.BurdetteJ. H.MaldjianJ. A.WallaceM. T. (2006). Enhanced multisensory integration in older adultsNeurobiol. Aging 2711551163.

LennieP. (1998). Single units and visual cortical organizationPerception 27889935.

LewkowiczD. J. (1985). Developmental changes in infants’ visual response to temporal frequencyDev. Psychol. 21858865.

LogothetisN. K.SheinbergD. L. (1996). Visual object recognitionAnnu. Rev. Neurosci. 19577621.

LovelaceC. T.SteinB. E.WallaceM. T. (2003). An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detectionCogn. Brain Res. 17447453.

LuisC. A.KeeganA. P.MullanM. (2009). Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern USInt. J. Geriatr. Psychiatry 24197201.

MaederP. P.MeuliR. A.AdrianiM.BellmannA.FornariE.ThiranJ. P.PittetA.ClarkeS. (2001). Distinct pathways involved in sound recognition and localization: a human fMRI studyNeuroimage 14802816.

MaguinnessC.SettiA.BurkeK. E.KennyR. A.NewellF. N. (2011). The effect of combined sensory and semantic components on audio-visual speech perception in older adultsFront. Aging Neurosci. 319.

MahoneyJ. R.LiP. C. C.Oh-ParkM.VergheseJ.HoltzerR. (2011). Multisensory integration across the senses in young and old adultsBrain Res. 14264353.

MahoneyJ. R.VergheseJ.DumasK.WangC.HoltzerR. (2012). The effect of multisensory cues on attention in agingBrain Res. 14726373.

MahoneyJ. R.HoltzerR.VergheseJ. (2014). Visual-somatosensory integration and balance: evidence for psychophysical integrative differences in agingMultisens. Res. 271742.

MeredithM. A.SteinB. E. (1983). Interactions among converging sensory inputs in the superior colliculusScience 221(4608) 389391.

MeredithM. A.NemitzJ. W.SteinB. E. (1987). Determinants of multisensory integration in superior colliculus neurons. I. Temporal factorsJ. Neurosci. 732153229.

MillerJ. (1982). Divided attention: evidence for coactivation with redundant signalsCogn. Psychol. 14247279.

MillerJ. (1991). Channel interaction and the redundant-targets effect in bimodal divided attentionJ. Exp. Psychol. Hum. Percept. Perform. 17160169.

MilnerA. D.GoodaleM. A. (2008). Two visual systems re-viewedNeuropsychologia 46774785.

MishkinM.UngerleiderL. G.MackoK. A. (1983). Object vision and spatial vision: two cortical pathwaysTrends Neurosci. 6414417.

MolholmS.RitterW.JavittD. C.FoxeJ. J. (2004). Multisensory visual–auditory object recognition in humans: a high-density electrical mapping studyCereb. Cortex 14452465.

MolholmS.SehatpourP.MehtaA. D.ShpanerM.Gomez-RamirezM.OrtigueS.DykeJ. P.SchwartzT. H.FoxeJ. J. (2006). Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordingsJ. Neurophysiol. 96721729.

MooreJ. K.LinthicumF. H. (2007). The human auditory system: a timeline of developmentInt. J. Audiol. 46460478.

MozolicJ. L.HugenschmidtC. E.PeifferA. M.LaurientiP. J. (2008). Modality-specific selective attention attenuates multisensory integrationExp. Brain Res. 1843952.

NardiniM.JonesP.BedfordR.BraddickO. (2008). Development of cue integration in human navigationCurr. Biol. 18689693.

NeilP. A.Chee-RuiterC.ScheierC.LewkowiczD. J.ShimojoS. (2006). Development of multisensory spatial integration and perception in humansDev. Sci. 9454464.

PassarottiA. M.PaulB. M.BussiereJ. R.BuxtonR. B.WongE. C.StilesJ. (2003). The development of face and location processing: an fMRI studyDev. Sci. 6100117.

PeifferA. M.MozolicJ. L.HugenschmidtC. E.LaurientiP. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection taskNeuroreport 1810771081.

PoliakoffE.AshworthS.LoweC.SpenceC. (2006). Vision and touch in ageing: crossmodal selective attention and visuotactile spatial interactionsNeuropsychologia 44507517.

RaabD. H. (1962). Statistical facilitation of simple reaction timesTrans. N. Y. Acad. Sci. 24574590.

RauscheckerJ. P.TianB. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortexProc. Natl Acad. Sci. USA 971180011806.

RazN.GunningF. M.HeadD.DupuisJ. H.McQuainJ.BriggsS. D.LokenW. J.ThorntonA. E.AckerJ. D. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matterCereb. Cortex 7268282.

ReedC. L.KlatzkyR. L.HalgrenE. (2005). What vs. where in touch: an fMRI studyNeuroimage 25718726.

RoalfD. R.MobergP. J.XieS. X.WolkD. A.MoelterS. T.ArnoldS. E. (2013). Comparative accuracies of two common screening instruments for classification of Alzheimer’s disease, mild cognitive impairment, and healthy agingAlzheimers Dement. 9529537.

RossL. A.MolholmS.BlancoD.Gomez-RamirezM.Saint-AmourD.FoxeJ. J. (2011). The development of multisensory speech perception continues into the late childhood yearsEur. J. Neurosci. 3323292337.

SestieriC.Di MatteoR.FerrettiA.Del GrattaC.CauloM.TartaroA.Olivetti BelardinelliM.RomaniG. L. (2006). “What” versus “where” in the audiovisual domain: an fMRI studyNeuroimage 33672680.

SettiA.BurkeK. E.KennyR. A.NewellF. N. (2011). Is inefficient multisensory processing associated with falls in older people? Exp. Brain Res. 209375384.

SettiA.BurkeK. E.KennyR.NewellF. N. (2013). Susceptibility to a multisensory speech illusion in older persons is driven by perceptual processesFront. Psychol. 4575.

ShenL.HuX.YacoubE.UgurbilK. (1999). Neural correlates of visual form and visual spatial processingHum. Brain Mapp. 86071.

SinnettS.Soto-FaracoS.SpenceC. (2008). The co-occurrence of multisensory competition and facilitationActa Psychol. 128153161.

SnodgrassJ. G.VanderwartM. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexityJ. Exp. Psychol. Learn. Mem. Cogn. 6174215.

SprengR. N.WojtowiczM.GradyC. L. (2010). Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domainsNeurosci. Biobehav. Rev. 3411781194.

SteinB. E. (Ed.) (2012). The New Handbook of Multisensory Processing. MIT PressLondon, UK.

SteinB. E.MeredithM. A. (1993). The Merging of the Senses. MIT PressLondon, UK.

SuiedC.Viaud-DelmonI. (2009). Auditory–visual object recognition time suggests specific processing for animal soundsPloS One 4e5256.

SuiedC.BonneelN.Viaud-DelmonI. (2009). Integration of auditory and visual information in the recognition of realistic objectsExp. Brain Res. 19491102.

TalsmaD.WoldorffM. G. (2005). Selective attention and multisensory integration: multiple phases of effects on the evoked brain activityJ. Cogn. Neurosci. 1710981114.

TalsmaD.KokA.RidderinkhofK. R. (2006). Selective attention to spatial and non-spatial visual stimuli is affected differentially by age: effects on event-related brain potentials and performance dataInt. J. Psychophysiol. 62249261.

TalsmaD.DotyT. J.WoldorffM. G. (2007). Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cereb. Cortex 17679690.

ToepperM.MarkowitschH. J.GebhardtH.BebloT.BauerE.WoermannF. G.DriessenM.SammerG. (2014). The impact of age on prefrontal cortex integrity during spatial working memory retrievalNeuropsychologia 59157168.

TremblayC.ChampouxF.VossP.BaconB. A.LeporeF.ThéoretH. (2007). Speech and non-speech audio-visual illusions: a developmental studyPloS One 2e742.

UlrichR.MillerJ.SchröterH. (2007). Testing the race model inequality: an algorithm and computer programsBehav. Res. Methods 39291302.

Van BovenR. W.IngeholmJ. E.BeauchampM. S.BikleP. C.UngerleiderL. G. (2005). Tactile form and location processing in the human brainProc. Natl Acad. Sci. USA 1021260112605.

Van der BurgE.OliversC. N. L.BronkhorstA. W.TheeuwesJ. (2008). Pip and pop: nonspatial auditory signals improve spatial visual searchJ. Exp. Psychol. Hum. Percept. Perform. 3410531065.

WallaceM. T.SteinB. E. (2000). Onset of cross-modal synthesis in the neonatal superior colliculus is gated by the development of cortical influencesJ. Neurophysiol. 8335783582.

WallaceM. T.MeredithM. A.SteinB. E. (1992). Integration of multiple sensory modalities in cat cortexExp. Brain Res. 91484488.

WallaceM. T.PerraultT. J.HairstonW. D.SteinB. E. (2004). Visual experience is necessary for the development of multisensory integrationJ. Neurosci. 2495809584.

WestlyeL. T.WalhovdK. B.DaleA. M.BjørnerudA.Due-TønnessenP.EngvigA.FjellA. M. (2010). Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensityNeuroimage 52172185.

WittenI. B.KnudsenE. I. (2005). Why seeing is believing: merging auditory and visual worldsNeuron 48489496.

WoodsD. L. (1990). The physiological basis of selective attention: implications of event-related potential studies in: Event-Related Brain Potentials: Basic Issues and ApplicationsRohrbaughJ. W.ParasuramanR.JohnsonR. J. (Eds) pp.  178209. Oxford University PressOxford, UK.

YoungM. P. (1992). Objective analysis of the topological organisation of the primate cortical visual systemNature 358(6382) 152155.

Yuval-GreenbergS.DeouellL. Y. (2009). The dog’s meow: asymmetrical interaction in cross-modal object recognitionExp. Brain Res. 193603614.


  • View in gallery

    A schematic illustration of the experimental set-up used for testing. The visual stimuli were presented in one of four locations; upper left, lower left, upper right and lower right. The four visual targets are shown in this figure, each occupying one of the four quadrant positions, for illustrative purposes only (four targets never appeared together during the test). The auditory stimuli were presented through one of the four speakers which were each positioned in one of four quadrant positions as illustrated.

  • View in gallery

    Plots of the mean percentage accuracy for each of the target stimulus conditions across the four age groups in the (a) object identification task and (b) object localisation tasks. Error bars represent ±1 standard error of the mean.

  • View in gallery

    Plots of the mean response times to the correct trials taken by each of the age groups to (a) identify and (b) locate the target objects presented within each target stimulus condition. Error bars represent ±1 standard error of the mean.

  • View in gallery

    Cumulative probability distributions of reaction times to correct responses for AtVtCON, At and Vt targets in the object identification task for (a) children, (b) adolescents, (c) young adults and (d) older adults and the object location task for (e) children, (f) adolescents, (g) young adults and (h) older adults.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 72 72 66
Full Text Views 12 12 12
PDF Downloads 2 2 2
EPUB Downloads 0 0 0